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The presentation is based on the paper of K.G. Klimenko, R.N.
Zhokhov, V.Ch. Zhukovsky "Superconducting phase transitions
induced by chemical potential in (2+1)-dimensional four-fermion
quantum �eld theory".



Why it can be interesting

Interest for investigation of (2+1)-models with four-fermion
interactions of the Gross-Neveu (GN) type is explained by more
simple structure of QFT in two-, rather than in three spatial
dimensions. It is much easier to investigate qualitatively such real
physical phenomena as dynamical symmetry breaking, and to model
phase diagrams of real quantum chromodynamics (QCD) etc. in
the framework of (2+1)-Gross-Neveu (GN)type models.There
another motivation for studying these models .The fact that there
are many condensed matter systems which, �rstly, have a
(quasi-)planar structure and, secondly, their excitation spectrum is
described adequately by relativistic Dirac-like equation rather than
by Schr�odinger one. Among these systems are the high-Tc cuprate
and iron superconductors , the one-atom thick layer of carbon
atoms, or graphene, etc. Thus, many properties of such condensed
matter systems can be explained in the framework of (2+1)
GN-type models.



Model and its Lagrangian

The Lagrangian of the model is

L =
N∑

k=1

ψ̄k

(
γν i∂ν + µγ0

)
ψk +

G1

N

(
N∑

k=1

ψ̄kψk

)2

+ (1)

G2

N

(
N∑

k=1

ψT
k Cψk

) N∑
j=1

ψ̄jC ψ̄
T
j


where µ is the fermion number chemical potential. ψk

(k = 1, ...,N) is a fundamental multiplet of O(N) group. Moreover,
each �eld ψk is a four-component Dirac spinor. The quantities γν

(ν = 0, 1, 2) are matrices in the 4-dimensional spinor space.
Moreover, C ≡ γ2 is the charge conjugation matrix.



Lagrangian

Clearly, the Lagrangian L is invariant under transformations from
the internal auxiliary O(N) group, which is introduced here in order
to make it possible to perform all the calculations in the framework
of the nonperturbative large-N expansion method. Physically more
interesting is that the model (1) is invariant under the discrete
chiral transformation, ψk → γ5ψk andU(1) fermion number group,
ψk → exp(iα)ψk (k = 1, ...,N), responsible for the fermion number
conservation or, equivalently, for the electric charge conservation
law in the system under consideration.



Algebra of the γν-matrices

The algebra of the γν-matrices as well as their particular
representation are.: γµ = diag(γ̃µ,−γ̃µ), where γ̃µ

γ̃0 = σ3 =

(
1 0
0 −1

)
, γ̃1 = iσ1 =

(
0 i
i 0

)
, γ̃2 = iσ2 =

(
0 1
−1 0

)
, (2)

In addition to the Dirac matrices γµ (µ = 0, 1, 2) there exist two
other matrices γ3, γ5 which anticommute with all γµ (µ = 0, 1, 2)
and with themselves

γ3 =

(
0 , I
I , 0

)
, γ5 = γ0γ1γ2γ3 = i

(
0 , −I
I , 0

)
, (3)

with I being the unit 2× 2 matrix.



Linearized Lagrangian

The linearized version of Lagrangian that contains auxiliary bosonic
�elds σ(x), ∆(x) and ∆∗(x) has the following form

L = −Nσ2

4G1
− N

4G2
∆∗∆ (4)

+
N∑

k=1

[
ψ̄k

(
γν i∂ν + µγ0 − σ

)
ψk −

∆∗

2
ψT
k Cψk −

∆

2
ψ̄kC ψ̄

T
k

]
.



Euler-Lagrange equations of motion for bosonic �elds

Euler-Lagrange equations of motion for bosonic �elds which take
the form

σ(x) = −2
G1

N

N∑
k=1

ψ̄kψk , ∆(x) = −2
G2

N

N∑
k=1

ψT
k Cψk , (5)

∆∗(x) = −2
G2

N

N∑
k=1

ψ̄kC ψ̄
T
k .



Thermodynamic potential

We study the phase structure of the four-fermion model (1)
starting from the equivalent semi-bosonized Lagrangian. In the
leading order of the large-N approximation, the e�ective action
Seff(σ,∆,∆∗) of the considered model is expressed by means of the
path integral over fermion �elds

exp(iSeff(σ,∆,∆∗)) =

∫ N∏
l=1

[dψ̄l ][dψl ] exp
(
i

∫
L d3x

)
,

where

Seff(σ,∆,∆∗) = −
∫

d3x

[
N

4G1
σ2(x) +

N

4G2
∆(x)∆∗(x)

]
+ S̃eff .



Thermodynamic potential

S̃eff is given by:

exp(i S̃eff) =

∫ N∏
l=1

[dψ̄l ][dψl ] (6)

exp
{
i

∫ N∑
k=1

[
ψ̄k(γν i∂ν+µγ0−σ)ψk−

∆∗

2
ψT
k Cψk−

∆

2
ψ̄kC ψ̄

T
k

]
d3x

}
.



Thermodynamic potential

For simplicity, we suppose that the above mentioned ground state
expectation values do not depend on space-time coordinates, i.e.

〈σ(x)〉 ≡ M, 〈∆(x)〉 ≡ ∆, 〈∆∗(x)〉 ≡ ∆∗, (7)

M,∆,∆∗ are coordinates of the global minimum point of the
thermodynamic potential (TDP) Ω(M,∆,∆∗). In the leading order
of the large-N expansion it is de�ned by the following expression:∫

d3xΩ(M,∆,∆∗) =

= − 1

N
Seff{σ(x),∆(x),∆∗(x)}

∣∣∣
σ(x)=M,∆(x)=∆,∆∗(x)=∆∗

,



Thermodynamic potential

∫
d3xΩ(M,∆,∆∗) =

∫
d3x

(
M2

4G1
+

∆∆∗

4G2

)
+ (8)

i

N
ln

(∫ N∏
l=1

[dψ̄l ][dψl ]e
i
∫ [

ψ̄kDψk−∆∗
2
ψT
k Cψk−∆

2
ψ̄kC ψ̄

T
k

]
d3x

)
,

where D = γν i∂ν + µγ0 −M.



Thermodynamic potential

We suppose that ∆ = ∆∗ ≡ ∆, where ∆ is already a real quantity.

∫
[dq] exp

(
i

∫
d3x

[
− 1

2
qTAq + ηTq

])
= (9)

(det(A))1/2 exp
(
− i

2

∫
d3x

[
ηTA−1η

])
,

where A is an antisymmetric operator



Thermodynamic potential

We obtain the following expression for the zero temperature,
T = 0, TDP of the GN model:

Ω(M,∆) =
M2

4G1
+

∆2

4G2
+ i

∫
d3p

(2π)3
ln
[
(p2

0 − (E+
∆)2)(p2

0 − (E−∆)2)
]
, (10)

where (E±∆)2 = E 2 + µ2 + ∆2 ± 2
√
M2∆2 + µ2E 2

and E =
√

M2 + |~p|2.
we suppose that µ ≥ 0, M ≥ 0



Regularized expression for TDP

We regularize the zero temperature TDP by cutting momenta, i.e.
we suppose that |p1| < Λ, |p2| < Λ. As a result we have the
following regularized expression (which is �nite at �nite values of
Λ):

Ωreg (M,∆) =

=
M2

4G1
+

∆2

4G2
− 1

π2

∫ Λ

0
dp1

∫ Λ

0
dp2

(
E+

∆ + E−∆
)

= (11)

= M2

[
1

4G1
− 2Λ ln(1 +

√
2)

π2

]
+ ∆2

[
1

4G2
− 2Λ ln(1 +

√
2)

π2

]

− 2Λ3(
√

2 + ln(1 +
√

2))

3π2
+O(Λ0), (12)



Regularization

We suppose that the bare coupling constants G1 and G2 depends
on the cuto� parameter Λ in such a way that in the limit Λ→∞
one obtains a �nite expressions in the square brackets . Clearly, to
ful�l this requirement it is su�cient to require that

1

4G1
≡ 1

4G1(Λ)
=

2Λ ln(1 +
√

2)

π2
+

1

2πg1
(13)

1

4G2
≡ 1

4G2(Λ)
=

2Λ ln(1 +
√

2)

π2
+

1

2πg2
,

where g1,2 are �nite and Λ are independent model parameters with
dimensionality of inverse mass.



Renormalized TDP.

Ωren(M,∆) = (14)

= lim
Λ→∞

{
Ωreg (M,∆)

∣∣∣
G1=G1(Λ),G2=G2(Λ)

+
2Λ3(
√

2 + ln(1 +
√

2))

3π2

}
.



Expression for the renormalized TDP at µ = 0, µ 6= 0.

In vacuum, i.e. at µ = 0, TDP is usually called e�ective potential.

V (M,∆) ≡ Ωren(M,∆)
∣∣
µ=0

= (15)

=
M2

2πg1
+

∆2

2πg2
+

(M + ∆)3

6π
+
|M −∆|3

6π
.

Expression for the renormalized TDP at µ 6= 0.

12πΩren(M,∆) =

=
6M2

g1
+

6∆2

g2
+ 2

(
M +

√
µ2 + ∆2

)3
+ 2

∣∣∣M −√µ2 + ∆2
∣∣∣3

− 3t+

(
M +

√
µ2 + ∆2

)
+ 3t−

∣∣∣M −√µ2 + ∆2
∣∣∣

− 3(µ2 −M2)∆2

µ
ln

∣∣∣∣∣ t+ + µ(M +
√
µ2 + ∆2)

t− + µ|M −
√
µ2 + ∆2|

∣∣∣∣∣ , (16)

where t± = M
√
µ2 + ∆2 ± µ2.



Phase structure of the model at T = 0

The coordinates of the global minimum point (M0,∆0) of the TDP
Ωren(M,∆) de�ne the ground state expectation values of auxiliary
�elds σ(x) and ∆(x). Namely, M0 = 〈σ(x)〉 and ∆0 = 〈∆(x)〉. The
quantities M0 and ∆0 are usually called order parameters, or gaps,
because they are responsible for the phase structure of the model
or, in other words, for the properties of the model ground state.
Moreover, the gap M0 is equal to the dynamical mass of
one-fermionic excitations of the ground state. As a rule, gaps
depend on model parameters as well as on various external factors.
In our consideration the gaps M0 and ∆0 are certain functions of
the free model parameters g1 and g2 and such external factors as
chemical potential µ and temperature T .



Phase structure of the model in vacuum

Ðèñ.: The (g1, g2)-phase portrait of the model at µ = 0. The shorthands
I, II and III denote the symmetric, the chiral symmetry breaking and the
superconducting phases, respectively. In the phase II 〈σ〉 = −1/g1. In the
phase III 〈∆〉 = −1/g2. On the curve L≡ {(g1, g2) : g1 = g2}, where
g1,2 < 0, there is a coexistence of the phases II and III.

minimum point (M0,∆0) the relations M0 = −1/g1 and ∆0 = 0
are valid. So in this phase chiral symmetry is spontaneously broken
down and fermions acquire dynamically the mass M0. Finally, in the
superconducting phase III, where g2 < 0, we have the following
values for the gaps M0 = 0 and ∆0 = −1/g2.



Phase structure of the model in vacuum

The plane (g1, g2) is divided into several areas. In each area one of
the phases I, II or III is implemented. In the phase I, i.e. at g1 > 0
and g2 > 0, the global minimum of the e�ective potential V (M,∆)
is arranged at the origin. So in this case we have M0 = 〈σ(x)〉 = 0
and ∆0 = 〈∆(x)〉 = 0. As a result, in the phase I both discrete
chiral and continuous electromagnetic U(1) symmetries remain
intact and fermions are massless. Due to this reason the phase I is
called symmetric. In the phase II, which is allowed only for g1 < 0,
at the global minimum point (M0,∆0) the relations M0 = −1/g1

and ∆0 = 0 are valid. So in this phase chiral symmetry is
spontaneously broken down and fermions acquire dynamically the
mass M0. Finally, in the superconducting phase III, where g2 < 0,
we have the following values for the gaps M0 = 0 and ∆0 = −1/g2.



Consideration of the chemical potential

Numerical and analytical investigations of the TDP show that its
minimum points are of the form (M 6= 0,∆ = 0), (M = 0,∆ 6= 0)
or (M = 0,∆ = 0) only. So to study the properties of the global
minimum point it is enough to consider its reductions on the M-
and ∆-axes, where the TDP becomes

12πΩren(M,∆)
∣∣∣
∆=0

=
6M2

g1
+ 2 (M + µ)3 + 2 |M − µ|3

− 3µ (M + µ)2 + 3µ(M − µ) |M − µ| ,(17)

12πΩren(M,∆)
∣∣∣
M=0

=
6∆2

g2
+ 4(µ2 + ∆2)3/2 − 6µ2

√
µ2 + ∆2

− 3µ∆2 ln

(
(µ+

√
µ2 + ∆2)2

∆2

)
, (18)



Particle density

we study the behavior of a particle density n in di�erent phases
when µ varies,as well

n = −∂Ωren(M,∆)

∂µ

∣∣∣
M=M0,∆=∆0

. (19)

expressions for the particle density in the chiral symmetry broken II
and superconducting III phases:

n
∣∣
phase II

=
1

2π
(µ2 −M2

0 )θ(µ−M0), (20)

n
∣∣
phase III

=
1

2π

µ√µ2 + ∆2
0 + ∆2

0 ln
µ+

√
µ2 + ∆2

0

∆0

 ,(21)
where θ(x) is the Heaviside step-function.



Phase structure of the model in vacuum

Ðèñ.: The (g1, g2)-phase portrait of the model at µ = 0. The shorthands
I, II and III denote the symmetric, the chiral symmetry breaking and the
superconducting phases, respectively. In the phase II 〈σ〉 = −1/g1. In the
phase III 〈∆〉 = −1/g2. On the curve L≡ {(g1, g2) : g1 = g2}, where
g1,2 < 0, there is a coexistence of the phases II and III.



Phase structure of the model at nonzero µ. The cas: g1 < 0.

Ðèñ.: The (µ, g2)-phase portrait of the model and critical chemical
potential µcrit(g2) vs g2 at arbitrary �xed g1 < 0. At each point
µ = µcrit(g2) 6= 0 there is a �rst order phase transition from the chiral
symmetry breaking phase II to the superconducting phase III.



Superconducting gap.The cas: g1 < 0.

Ðèñ.: Superconducting gap ∆0 = ∆crit(g2) vs g2 which is generated at
the critical point, i.e. at µ = µcrit(g2), at arbitrary �xed g1 < 0.



Particle density .

-

Ðèñ.: Particle density n = ncrit(g2) vs g2 which is generated at the critical
point, i.e. at µ = µcrit(g2), at arbitrary �xed g1 < 0. At µ < µcrit(g2) the
particle density n is equal to zero.



Superconducting gap.The cas: g1 < 0 and g2 = 0.5|g1|.

Ðèñ.: Superconducting gap ∆0 and particle density n vs µ at �xed g1 < 0
and g2 = 0.5|g1|. Curves 1 and 2 are the plots of the dimensionless
quantities |g1|∆0 and |g1|2n, correspondingly.



Superconducting gap.The cas: g1 < 0.

Ðèñ.: Superconducting gap ∆0 and particle density n vs µ at �xed g1 < 0
and g2 = −1.5|g1|. Curves 1 and 2 are the plots of the dimensionless
quantities |g1|∆0 and |g1|2n, respectively.



Superconducting gap ∆0.

Ðèñ.: Superconducting gap ∆0 and particle density n vs µ at arbitrary
�xed g1 (both at g1 < 0 and g1 > 0) as well as at g2 = −0.5|g1|. Curves
1 and 2 are the plots of the dimensionless quantities |g1|∆0 and |g1|2n,
respectively.



Superconducting gap.The cas: g1 > 0.

Ðèñ.: Superconducting gap ∆0 and particle density n vs µ at arbitrary
�xed g1 > 0 as well as at g2 = 0.5g1. Curves 1 and 2 are the plots of the
dimensionless quantities |g1|∆0 and |g1|2n, respectively.



Superconducting gap.The cas: g1 > 0.

Ðèñ.: Superconducting gap ∆0 and particle density n vs g2 < 0 at
arbitrary �xed g1 > 0 and µ = 0.5/g1. Curves 1 and 2 are the plots of the
dimensionless quantities g1∆0 and g2

1 n, respectively.



Superconducting gap ∆0.

Ðèñ.: Superconducting gap ∆0 and particle density n vs g2 > 0 at
arbitrary �xed g1 > 0 and µ = 0.5/g1. Curves 1 and 2 are the plots of the
dimensionless quantities g1∆0 and g2

1 n, respectively.



Finite temperature

In order to get the corresponding (unrenormalized) thermodynamic
potential ΩT (M,∆) at �nite temperature one can simply start from
the expression for the TDP at zero temperature and perform the
following standard replacements:∫ ∞
−∞

dp0

2π

(
· · ·
)
→ iT

∞∑
n=−∞

(
· · ·
)
, p0 → p0n ≡ iωn ≡ iπT (2n + 1), n = 0,±1,±2, ..., (22)

i.e. the p0-integration should be replaced by the summation over
Matsubara frequencies ωn.



Finite temperature

Summing over Matsubara frequencies in the obtained expression ,
one can �nd for the TDP

ΩT (M,∆) =
M2

4G1
+

∆2

4G2
(23)

−
∫ ∞
−∞

d2p

(2π)2

(
E+

∆ + E−∆
)
−2T

∫ ∞
−∞

d2p

(2π)2
ln
([

1 + e−βE
+
∆
][

1 + e−βE
−
∆
])
,

where β = 1/T . Clearly, only the �rst integral in this expression
(which is the same as in the zero temperature case) is responsible
for ultraviolet divergency of the whole TDP . So, regularizing the
TDP in the way as it was done in (11) for zero temperature TDP
and then replacing G1,2 → G1,2(Λ)), we can obtain in the limit
Λ→∞ a �nite expression denoted as Ωren

T (M,∆),



Finite temperature

Ωren
T (M,∆)

∣∣∣
∆=0

= Ωren
T=0(M,∆)

∣∣∣
∆=0
− (24)

−2T

∫ ∞
−∞

d2p

(2π)2
ln
([

1 + e−β(E+µ)
][

1 + e−β|E−µ|
])

=

=
M2

2πg1
+
M3

3π
−2T

∫ ∞
−∞

d2p

(2π)2
ln
([

1 + e−β(E+µ)
][

1 + e−β(E−µ)
])
,

Ωren
T (M,∆)

∣∣∣
M=0

= Ωren
T=0(M,∆)

∣∣∣
M=0
− (25)

−2T

∫ ∞
−∞

d2p

(2π)2
ln
([

1 + e−βE
+
∆
][

1 + e−βE
−
∆
])
,

where E =
√
|~p|2 + M2, (E±∆ )2 = (|~p| ± µ)2 + ∆2



Phase structure of the model in vacuum

Ðèñ.: The (g1, g2)-phase portrait of the model at µ = 0. The shorthands
I, II and III denote the symmetric, the chiral symmetry breaking and the
superconducting phases, respectively. In the phase II 〈σ〉 = −1/g1. In the
phase III 〈∆〉 = −1/g2. On the curve L≡ {(g1, g2) : g1 = g2}, where
g1,2 < 0, there is a coexistence of the phases II and III.



Phase structure of the model at �nite temperature and µ
.The case of g2 = −0.5|g1| , g1 < 0 and g1 > 0

Ðèñ.: (µ,T )-phase diagram of the model at g2 = −0.5|g1| and arbitrary
�xed g1 both at g1 < 0 and g1 > 0.



Phase structure of the model at �nite temperature and µ
.The case of g1 > 0 and at g2 = 0.5g1

Ðèñ.: (µ,T )-phase diagram of the model at arbitrary �xed g1 > 0 and at
g2 = 0.5g1.



Phase structure of the model at �nite temperature and µ
.The case of g2 = −1.5|g1| and g1 < 0

Ðèñ.: (µ,T )-phase diagram of the model at g2 = −1.5|g1| and arbitrary
�xed g1 < 0.The coordinates of the tricritical point A are the following
ones, |g1|µA ≈ 0.645 and |g1|TA ≈ 0.602. Moreover, |g1|µc ≈ 0.545 and
|g1|Tc = 1/(2 ln 2) ≈ 0.721.



Phase structure of the model at �nite temperature and µ
.The case of g2 = 0.5|g1| and g1 < 0

Ðèñ.: (µ,T )-phase diagram of the model at g2 = 0.5|g1| and arbitrary
�xed g1 < 0. The coordinates of the tricritical point A are the following
ones, |g1|µA ≈ 0.999 and |g1|TA ≈ 0.056. Moreover, |g1|µc ≈ 0.995 and
|g1|Tc = 1/(2 ln 2) ≈ 0.721.



Conclusions.

The case T = 0, µ = 0.
In this case the phase portrait is presented in terms of the �nite
coupling constants g1 and g2.
The case T = 0, µ 6= 0.
At T = 0 and at growing chemical potential the system is
transformed into a superconducting state.
The case T > 0, µ 6= 0.
At �xed µ and increasing temperature the symmetric phase is
restored. However, at arbitrary �xed T , growth of the chemical
potential leads to appearing of superconductivity in the system at
arbitrary relations between coupling constants g1 and g2.
-
The fact that chemical potential induces superconductivity
phenomenon is the main result of our paper.



System in external magnetic �eld.

We investigate the in�uence of an external magnetic �eld ~B on the
(2+1)-dimensional GN�type model with two massless fermions
ψ1(x) and ψ2(x) belonging to a reducible 4-component spinor
representation of the (2+1)-dimensional Lorentz group (the spinor
�elds ψ1(x) and ψ2(x) are introduced for quasiparticles (electrons)
with spin projections 1/2 and -1/2 on the direction of the magnetic
�eld ~B , respectively). The model describes low-energy dynamics of
quasiparticles both in the fermion-antifermion (or chiral) and
fermion-fermion (or Cooper pairing) channels. External magnetic
�eld is parallel to the system plane, i.e. ~B = ~B‖.

L =
2∑

k=1

ψ̄k

[
γρi∂ρ + µγ0 − ν(−1)kγ0

]
ψk + G1

(
2∑

k=1

ψ̄kψk

)2

+

+G2

(
2∑

k=1

ψT
k Cψk

) 2∑
j=1

ψ̄jC ψ̄
T
j





Superconducting gap ∆0 and particle density n. The case of

g1 > 0, g2 = 0.5g1, µ = 0.5/g1

Ðèñ.: The case µ 6= 0: Superconducting gap ∆0 and particle density n vs
B at arbitrary �xed g1 > 0 as well as at g2 = 0.5g1 and µ = 0.5/g1.
Curves 1 and 2 are the plots of the dimensionless quantities g1∆0 and
g2

1 n, respectively.



Magnetization m and magnetic susceptibility χ. The case of

g1 > 0, g2 = 0.5g1, µ = 0.5/g1.

Ðèñ.: The case µ 6= 0: Magnetization m and magnetic susceptibility χ vs
B at arbitrary �xed g1 > 0 as well as at g2 = 0.5g1 and µ = 0.5/g1.
Curves 1 and 2 are the plots of the dimensionless quantities g2

1m/µB and
g1χ/µ

2
B , respectively.



The (µ,B)-phase portrait of the model. The case of g1 < 0,
g2 = −1.5|g1|.

Ðèñ.: The case µ 6= 0: The (µ,B)-phase portrait of the model at
arbitrary �xed g1 < 0 as well as at g2 = −1.5|g1|.



The (µ,B)-phase portrait of the model. The case of g1 < 0,
g2 = 0.5|g1|.

Ðèñ.: The case µ 6= 0: The (µ,B)-phase portrait of the model at arbitrary
�xed g1 < 0 as well as at g2 = 0.5|g1|. Here II1 and II2 denote the chiral
symmetry breaking phases with n = 0, m = 0 and n 6= 0, m 6= 0,
respectively. The notation III stands for the superconducting phase.



The gaps M0 and ∆0 . The case of g1 < 0, g2 = 0.5|g1|,
µ = 0.7/|g1|.

Ðèñ.: The case µ 6= 0: The gaps M0 and ∆0 vs B at arbitrary �xed
g1 < 0 as well as at g2 = 0.5|g1| and µ = 0.7/|g1|. Curves 1 and 2 are
the plots of the dimensionless quantities |g1|M0 and |g1|∆0, respectively.
Here µB |g1|Bc ≈ 0.937.



Particle density n, magnetization m and magnetic

susceptibility χ. The case of g1 < 0, g2 = 0.5|g1|,
µ = 0.7/|g1|.

Ðèñ.: The case µ 6= 0: Particle density n, magnetization m and magnetic
susceptibility χ vs B at arbitrary �xed g1 < 0 as well as at g2 = 0.5|g1|
and µ = 0.7/|g1|. Curves 1, 2 and 3 are the plots of the dimensionless
quantities g2

1 n, g
2
1m/µB and |g1|χ/µ2

B , respectively. Here
µB |g1|Bc ≈ 0.937.
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