Моделирование и анализ результатов измерения процессов типа Дрелла-Яна на LHC

семинар в ведущей организации ИФВЭ, г.Протвино по материалам кандидатской диссертации

Сапронов Андрей

ляп оияи

17 сентября 2013

3

1 / 40

- 2 Монте Карло предсказания для процессов типа Дрелла-Яна
- Овмещение электрослабых поправок и партонных ливней
- 4 Анализ данных W/Z в эксперименте ATLAS
- 5 QCD анализ данных W/Z с помощью HERAFITTER
- 6 Результаты выдвигаемые на защиту

Содержание

1 Введение

- 2 Монте Карло предсказания для процессов типа Дрелла-Яна
- 3 Совмещение электрослабых поправок и партонных ливней
- 4 Анализ данных W/Z в эксперименте ATLAS
- 5 QCD анализ данных W/Z с помощью HERAFITTER
- Результаты выдвигаемые на защиту

Цели работы

- Теоретическое сопровождение анализа данных эксперимента ATLAS, полученных за 2010г., нацеленного на измерение сечения рождения электрослабых бозонов в процессах типа Дрелла–Яна
- Сопровождение анализа результатов данных измерений в контексте QCD с целью определения плотности (s/s)-кварков в протоне
- Исследование совмещения партонных ливней и электрослабых поправок к сечению процессов типа Дрелла–Яна, в том числе обусловленных вкладом процессов с фотоном в начальном состоянии, в зависимости от различных алгоритмов ливнеобразования

Мотивация изучения процессов DY

- Чистая сигнатура: большие значения $p_{\perp}(\ell)$ или недостающей энергии $E_T^{\rm miss}(\nu_{\ell})$ в чувствительном объеме детектора $p_{\perp} > 25 {\rm GeV}, |\eta_l| < 2.5;$
- Большие сечения рождения на LHC: $\sigma(W) = 30 \text{nb}(\sim 3e8 \text{ соб. при } L = 10 \text{fb}^{-1})$ $\sigma(Z) = 3.5 \text{nb}(\sim 3.5e7 \text{ соб. при } L = 10 \text{fb}^{-1})$ позволяют производить высокоточные измерения электрослабых параметров;
- Масса и ширина W бозона, а также распределения наблюдаемых вида W/Z;
- Извлечение и проверка PDF, измерение светимости;
- Калибровка детектора и настройка Монте Карло инструментов.

17 сентября 2013

Поправки NLO QCD к DY

$$\sigma_{\rm NLO} = \sigma_0 + \sigma_{virt} + \sigma_{real}$$

= $\int d\Phi_1 |M_0^2| + \int d\Phi_2 2\mathcal{R}e(M_0^{\dagger}M_{\rm virt}) + \int d\Phi_3 |M_{\rm real}|^2$

• Петлевые (виртуальные) поправки

- "Реальные" поправки
 - Излучение из начальных состояний

Глюон в начальном состоянии

Поправки NLO к DY

- Ультрафиолетовые (UV) расходимости в виртуальных амплитудах снимаются путем перенормировки констант связи;
- Размерная регуляризация используется для UV и инфракрасных (IR) расходимостей в $\overline{\mathrm{MS}}$;
- Полюса IR $1/\varepsilon^2$ и $1/\varepsilon$ сокращаются при сложении виртуальных и реальных вкладов;
- Коллинеарные члены с 1/arepsilon переносятся в PDF

Содержание

2 Монте Карло предсказания для процессов типа Дрелла-Яна

- 3) Совмещение электрослабых поправок и партонных ливней
- 4 Анализ данных W/Z в эксперименте ATLAS
- 5 QCD анализ данных W/Z с помощью HERAFITTER
- Результаты выдвигаемые на защиту

ヨト イヨ

Характеристики метода SANC

- Вычисления производятся в схеме перенормировки на массовой поверхности в R_ξ калибровке;
- Полное сечение NLO делится на несколько вкладов. Например, для электрослабых поправок:

$$\sigma^{\text{NLOEW}} = \sigma^{\text{Born}} + \sigma^{\text{virt}}(\lambda) + \sigma^{\text{soft}}(\lambda, \bar{\omega}) + \sigma^{\text{hard}}(\bar{\omega}) + \sigma^{\text{subt}}(\bar{\omega}) + \sigma^{\text{subt}}(\bar{\omega$$

- Поддерживаются схемы вычитания $\overline{\mathrm{MS}}$ и DIS.

А. Сапронов (ЛЯП ОИЯИ)

Свойства интегратора mcsanc

- Вычисляет полностью дифференциальное сечение для процессов Дрелла–Яна, излучения бозона Хиггса электрослабым бозоном и одиночного рождения *t*-кварка в *s*- и *t*-каналах в протон-протонных столкновениях для условий LHC;
- Позволяет вычислять электрослабые и QCD NLO поправки;
- Поддерживаются различные электрослабые схемы (\alpha(0), \alpha(M_Z), G_\mu) и фиксированные и бегущие шкалы факторизации и перенормировки;
- Вычисления в заданных кинематических ограничениях, учет рекомбинации;
- Параллелизация вычислений для многоядерных процессоров благодаря библиотеке Cuba (http://www.feynarts.de/cuba/)
- Простое использование (GNU autotools, LHAPDF, настройки через файл входных параметров)

Список поддерживаемых процессов

Используется следующая нумерация процессов: первая цифра соответствует знаку электрослабого тока, а последние две цифры определяют конечное состояние.

0xx - нейтральный ток, $xx = 01(e), 02(\mu), 03(\tau), 04(HZ)$

 $\pm 1xx$ - заряженный ток, $xx = 01(e), 02(\mu), 03(\tau), 04(HW),$ 05,06(од. t-кварк, s- и t-каналы)

pid	ff ightarrow	SANC ref.
001:003	$l^+l^-(l=e,\mu, au)$	arXiv:0711.0625,0901.2785
004	$Z^0 + H$	arXiv:hep-ph/0506120,0812.4207
\pm 101:103	$I^{\pm} + \nu_I$	arXiv:hep-ph/0506110,
\pm 104	$W^{\pm} + H$	-
105	$t+ar{b}$ (s-channel)	arXiv:1110.3622,1207.4400
106	t + q (t-channel)	-//-
-105	$\overline{t} + b$ (s-channel)	-//-
-106	$\overline{t} + q$ (t-channel)	-//-

Численные сравнения с MCFM v6.2 для процессов типа Дрелла–Яна

Сравнения проводились для следующих условий:

- $\sqrt{s_0} = 14 \text{TeV}$
- Свободные кинематические ограничения : $p_T > 0.1 GeV$ $(M_{\rm H} > 20~{\rm GeV}$ для нейтрального тока);
- Набор СТ10 PDF через интерфейс LHAPDF;
- Физические параметры взяты из PDG (16/05/2012)

pp ightarrow	$\ell^+\ell^- + X$	$\ell^+ u_\ell + X$	$\ell^- ar{ u}_\ell + X$
mcsanc LO	3338(1)	10696(1)	7981(1)
MCFM LO	3338(1)	10696(1)	7981(1)
mcsanc NLO QCD	3388(2)	12263(4)	9045(4)
MCFM NLO QCD	3382(1)	12260(1)	9041(5)
δ_{QCD}	1.49(3)	14.66(1)	13.35(3)
mcsanc NLO EW	3345(1)	10564(1)	7861(1)
δ_{EW}	0.22(1)	-1.23(1)	-1.49(1)

Сравнение с МСFM для дифференциальных сечений DY

B b

< 67 ►

Вклады от QCD и электрослабых поправок NLO

Оценка неучтенных поправок

```
Стандартная цепочка МС в ATLAS
использует РҮТНІА для
моделирования жесткого процесса
в ведущем порядке и партонных
ливней (PS) и PHOTOS для
излучения из конечных состояний
(FSR) :
```


В дополнение в SANC реализованы следующие поправки NLO EW:

- чисто слабые (PW);
- интерференция между начальным и конечным QED излучением (IFI);
- оставшиеся от ISR после вычитания коллинеарных расходимостей.

Данные поправки могут быть оценены вычитанием компоненты QED FSR из полных NLO EW сечений.

14 / 40

Оценка неучтенных поправок

Неучтенные поправки зависят от кинематических ограничений: например, для процесса $pp \to Z \to \mu^+\mu^-$ поправки к распределению по $M_{\mu^+\mu^-}$ меняются от -1% до 5% вокруг Z-резонанса, что делает необходимым их учет в анализе

$$\delta_{M_{ll}}(\text{MISS}) = \delta_{M_{ll}}(\text{NLO} - \text{FSR})$$

Содержание

1 Введение

- 2 Монте Карло предсказания для процессов типа Дрелла-Яна
- 3 Совмещение электрослабых поправок и партонных ливней
 - 4 Анализ данных W/Z в эксперименте ATLAS
- 5 QCD анализ данных W/Z с помощью HERAFITTER
 - Результаты выдвигаемые на защиту

Поправки NLO EW и партонные ливни

- Помимо петель и фотонного излучения, к NLO EW относятся поправки, обусловленные $\gamma + q$ процессами с фотоном в начальном состоянии $\gamma + q$ -
 - $$\begin{split} \gamma + \mathbf{q} &\to \mathbf{q}' + \ell^+ + \nu_\ell, \\ \gamma + \mathbf{q} &\to \mathbf{q} + \ell^- + \ell^+ \end{split}$$
 - Они составляют 1 2% к полному сечению и до 10% в дифф. распределениях
 - В данной работе было изучено совмещение электрослабых поправок, включая с фотоном в начальном состоянии, с различными алгоритмами партонных ливней (PS) Pythia8 и Herwig++

17 / 40

Комбинирование NLO EW и PS

Содержание

1 Введение

- 2 Монте Карло предсказания для процессов типа Дрелла-Яна
- 3 Совмещение электрослабых поправок и партонных ливней
- 4 Анализ данных W/Z в эксперименте ATLAS
 - 5 QCD анализ данных W/Z с помощью HERAFITTER

Результаты выдвигаемые на защиту

Детектор ATLAS

- Электромагнитный калориметр и трекинг внутренним детектором $|\eta| < 2.5 \Rightarrow$ электроны
- Мюонный спектрометр $|\eta| <$ 2.7, триггер покрывает $|\eta| <$ 2.4 \Rightarrow мюоны
- Калориметрическая герметичность до $|\eta| < 4.9 \Rightarrow$ jets, $E_T^{\rm miss}$, электроны с малыми углами

20 / 40

Интегральные сечения $W o \ell u$ и $Z o \ell \ell$

- Сечение в чувствительном объеме (fiducial) скорректированное на фактор эффективности $C_{W/Z}$ и отличие $\sigma_{fid} = \frac{N-B}{C_{W/Z} \cdot L_{int}}, \sigma_{tot} = \frac{\sigma_{fid}}{A_{W/Z}}$ MC/data
 - Полное сечение скорректировано на аксептанс $A_{W/Z} \sim 0.45 0.50$ на основе MC@NLO с CTEQ 6.6 NLO PDF.
 - Теоретические неопределенности на A_{W/Z} вычислялись из PDF и сравнений Mc@NLO-PowHeg и Рутніа-Негwig (δA_{W±} ~ 1.5%, δA₇ ~ 2.0%)

$\sigma_W^{fid} \cdot BR(W \to l\nu)$	$5.123 \pm 0.011 (sta) \pm 0.064 (sys) \pm 0.174 (lum) \pm 0.005 (acc) [nb]$
$\sigma^{fid}_{W^+}$ · BR($W \rightarrow l\nu$)	$3.108 \pm 0.008(\text{sta}) \pm 0.038(\text{sys}) \pm 0.106(\text{lum}) \pm 0.004(\text{acc}) \text{ [nb]}$
$\sigma^{fid}_{W^-}$ · BR($W \rightarrow l\nu$)	$2.016 \pm 0.007(sta) \pm 0.028(sys) \pm 0.069(lum) \pm 0.002(acc)$ [nb]
$\sigma^{fid}_{Z/\gamma^*} \cdot BR(Z/\gamma^* \to ll)$	$0.479 \pm 0.003 (sta) \pm 0.005 (sys) \pm 0.016 (lum) \pm 0.001 (acc) [nb]$
$\sigma^{tot}_W \cdot BR(W \to l\nu)$	$10.197 \pm 0.021(sta) \pm 0.127(sys) \pm 0.347(lum) \pm 0.165(acc)$ [nb]
$\sigma^{tot}_{W^+} \cdot BR(W \to l\nu)$	$6.041 \pm 0.016(\text{sta}) \pm 0.077(\text{sys}) \pm 0.205(\text{lum}) \pm 0.096(\text{acc}) \text{ [nb]}$
$\sigma^{tot}_{W^-} \cdot BR(W \to l\nu)$	$4.156 \pm 0.014 (sta) \pm 0.058 (sys) \pm 0.141 (lum) \pm 0.083 (acc)$ [nb]
$\sigma_{Z/\gamma^*}^{tot} \cdot BR(Z/\gamma^* \to ll)$	$0.937 \pm 0.006 (sta) \pm 0.009 (sys) \pm 0.032 (lum) \pm 0.016 (acc) [nb]$

21 / 40

17 сентября 2013

Корреляции неопределенностей PDF

Неопределенности PDF для наблюдаемой X вычисляются как:

$$\Delta X = |ec{
abla} X| = rac{1}{2} \sqrt{\sum_{i=1}^{N} \left(X_i^{(+)} - X_i^{(-)}
ight)^2}$$

Коэффициент корреляций между наблюдаемыми Х и Ү:

$$\cos\phi = \frac{\vec{\nabla}X\vec{\nabla}Y}{\Delta X\Delta Y} = \frac{1}{4\Delta X\Delta Y}\sum_{i=1}^{N} \left(X_{i}^{(+)} - X_{i}^{(-)}\right) \left(Y_{i}^{(+)} - Y_{i}^{(-)}\right)$$

определяет параметризацию эллипса корреляции X-Y:

Сравнение с теорией - чувствительный объем

- Некоторые различия между измерениями и предсказаниями
- Позволяет проводить сравнительный анализ наборов PDF
- NNLO предсказания, полученные с помощью FEWZ и DYNNLO, специально для сравнения с измерениями

Сравнение с теорией - полное сечение

- Большее согласие в силу возросших ошибок
- Различия для разных PDF незначительны (68% CL)
- Неопределенность на аксептанс при объединении сечений электронного и мюонного каналов учитывает эффекты PDF в "слепой" области детектора

Общеканальное сечение $d\sigma_Z/dy_Z$ vs NNLO

- В целом NNLO PDF хорошо описывают измерения
- Отклонения могут быть использованы для уточнения центральных значений PDF и неопределенностей

Общеканальное сечение $d\sigma_{W^{\pm}}/d\eta_\ell$ vs NNLO

- В целом NNLO PDF хорошо описывают измерения
- Отклонения могут быть использованы для уточнения центральных значений PDF и неопределенностей

Содержание

1 Введение

- 2 Монте Карло предсказания для процессов типа Дрелла-Яна
- 3 Совмещение электрослабых поправок и партонных ливней
- 4 Анализ данных W/Z в эксперименте ATLAS
- 5 QCD анализ данных W/Z с помощью HERAFITTER

Результаты выдвигаемые на защиту

Предпосылки для QCD анализа данных W/Z

- Рождение Z бозона более чувствительно к различию ии *d*-типов кварков.
- В случае рождения W^{\pm} s-кварки дают вклад вместе с с и имеет меньшее влияние, чем для Z
- Наблюдаемые, связанные с отношением сечений W/Z вместе с формой распределения уг могут нести информацию о партонных распределениях *s*-кварка.

$$r_s = 0.5(s+\bar{s})/\bar{d}$$

Инструменты анализа

- Программа для фитирования данных партонными распределениями HERAFITTER (http://herafitter.hepforge.org/)
- Теоретические предсказания:
 - APPLgrid для быстрой оценки сечений в приближении NLO QCD.
 Использует таблицы пертурбативных коэффициентов для свертки с произвольными партонными распределениями.
 - Программы Монте Карло FEWZ и DYNNLO для вычисления NNLO QCD К-факторов к заданным дифф. сечениям
 - Пограммы SANC для вычисления NLO EW К-факторов
- Данные:
 - Минимальный набор входных данных для определения PDF без внесения сдвигов относительно данных ATLAS: комбинированные данные HERA-I
 - Сконцентрироваться на тех PDF, в которых данные ATLAS имеют выделенный вклад: измерение плотности партонного распределения *s*-кварка

Выделение функций партонных распределений

PDF выделяются путем QCD фитирования измеренных сечений:

- Параметризация PDF в начальной масштабе гладкими функциями с достаточным количеством параметров
- Эволюция к другим масштабам с помощью DGLAP
- Вычисление сечений к DIS/DY процессам в приближении (N)NLO
- Вычислить χ^2 как меру согласия предсказаний с данными
- Получить наилучшее приближении к данным путем минимизации $\chi^2/N_{\rm DF}$

Поправки NLO EW и NNLO QCD

Учет поправок NNLO QCD и NLO EW производился путем введения соответствующих *К*-факторов:

- Электрослабые поправки вычислялись в системе SANC в схеме G_{μ} и составили $\sim -0.7\%$ и $\sim 0.1\%$ для нейтрального и заряженного токов, соотв.
- Для поправок NNLO QCD результаты FEWZ и DYNNLO совпадали в нейтральном токе, но различались на 1 – 1.5% в заряженном, что трактовалось как теоретическая неопределенность.

А. Сапронов (ЛЯП ОИЯИ)

Процессы типа Дрелла-Яна на LHC

Результаты фитирования

Определение χ^2 учитывает коррелированные систематические неопределенности

Channel	Partial $\chi^2/N_{ m DF}$		ν 0.7 - α ² = 2 GeV ²
	fixed $r_s = 0.5$	free <i>r_s</i>	0.6 HERA HERA
Ζ	9.9/8	4.5/8	0.5 HERA, ATLAS W.Z
W^+	18.0/11	16.5/11	0.4
W^-	10.9/11	10.6/11	0.2
Systematics	5.4	2.3	0.1
Total ATLAS	44.2/30	33.9/30	0^{-1} 10^{4} 10^{3} 10^{2} 10^{1}
			x

Конечный результат фита:

$$r_s = 1.00 \pm 0.20_{\mathrm{exp}}$$

при x = 0.023 и $Q^2 = 1.9 \text{GeV}^2$.

Содержание

1 Введение

- 2 Монте Карло предсказания для процессов типа Дрелла-Яна
- 3 Совмещение электрослабых поправок и партонных ливней
- 4 Анализ данных W/Z в эксперименте ATLAS
- 5 QCD анализ данных W/Z с помощью HERAFITTER
- 6 Результаты выдвигаемые на защиту

Результаты выдвигаемые на защиту

- Разработан и создан интегратор mcsanc для вычисления сечений процессов типа Дрелла–Яна, ассоциативного рождения Хиггса и электрослабых бозонов, а также одиночного рождения топ кварка в s- и t-каналах на основе фортранных модулей SANC. Проведено тщательно согласованное сравнение mcsanc-v1.01 с другими программными продуктами и литературой.
- Изучено влияние различных алгоритмов ливнеобразования, с упорядочиванием по поперечному импульсу (Pythia8) и алгоритма когерентного ветвления (Herwig++), на электрослабые поправки, включая обусловленные процессами с фотонами в начальном состоянии, реализованными в генераторах системы SANC.
- Получены теоретические предсказания для интегральных и дифференциальных сечений с учетом поправок NLO EW и NNLO QCD для различных наборов PDF в работе по измерению сечений рождения и распада W и Z/ γ^* бозонов на детекторе ATLAS на основе 35pb⁻¹ данных за 2010г. при $\sqrt{s} = 7 \text{TeV}$. Поправки NLO EW вычислялись с помощью программ SANC, а поправки NNLO QCD с помощью программы FEWZ.

Результаты выдвигаемые на защиту

- Проведено сравнение комбинированных интегральных и дифференциальных сечений рождения и распада W и Z бозонов с теоретическими предсказаниями для различных наборов PDF с учетом корреляций погрешностей.
- Оценено отношение плотностей партонных распределений *s*-кварка и морского *d*-кварка в протоне на основе данных детектора ATLAS за 2010г. с помощью программы HERAFITTER, используя метод быстрого восстановления сечения высших порядков приближения APPLgrid и таблицы *K*-факторов. Измеренное соотношение $0.5(s + \bar{s})/\bar{d}$, при значениях переданного импульса $Q^2 = 1.9 \text{GeV}^2$ и x = 0.023, оказалось равным $1.00^{+0.25}_{-0.28}$.

35 / 40

Список публикаций

- QCD parton showers and NLO EW corrections to Drell-Yan. P. Richardson, R.R. Sadykov, A.A. Sapronov, M.H. Seymour, P.Z. Skands. Nov 2010. 20 pp. JHEP 1206 (2012) 090
- 2 Determination of the strange quark density of the proton from ATLAS measurements of the $W \rightarrow \ell \nu_{\ell}$ and $Z \rightarrow \ell \ell$ cross sections. *ATLAS Collaboration (Georges Aad et al.)*. Mar 2012. 18 pp. Phys.Rev.Lett. 109 (2012) 012001 e-Print: arXiv:1203.4051
- Seasurement of the inclusive W[±] and Z/γ^{*} cross sections in the electron and muon decay channels in pp collisions at √s = 7TeV with the ATLAS detector. ATLAS Collaboration (Georges Aad et al.). Sep 2011. 43 pp. Phys.Rev. D85 (2012) 072004 e-Print: arXiv:1109.5141
- SANC integrator in the progress: QCD and EW contributions. D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya, L. Rumyantsev A. Sapronov, W. von Schlippe. Jul 2012. 5 pp. JETP Lett. 96 (2012) 285-289 e-Print: arXiv:1207.4400
- NLO EW and QCD proton-proton cross section calculations with mcsanc-v1.01. Sergey G. Bondarenko, Andrey A. Sapronov. Jan 2013. 9pp. Comp.Phys.Comm. 184 (2013) 2343-2350 e-Print: arXiv:1301.3687

・ロト ・得ト ・ヨト ・ヨト - ヨ

Дополнительные слайды

3. 3

Отбор событий $W
ightarrow \ell
u$

 Высокоэффективные триггеры одиночных лептонов

• $p_{T,\ell} > 20 \text{GeV}, |\eta_e| < 2.47, |\eta_\mu| < 2.4$ (исключая щель в кал-ре для e) изолированные лептоны: $E_T^{\text{miss}} > 25 \text{GeV}, m_T > 40 \text{GeV}$

- Фон QCD из фитирования данных $E_{\rm T}^{\rm miss}$ (e) и изучения контрольных областей в плоскости (*iso*, $E_{\rm T}^{\rm miss}$) (μ)
- 131 140К кандидатов с фоном в 7 9%

Отбор событий $Z o \ell \ell$

- Высокоэффективные триггеры одиночных лептонов
- $p_{T,\ell} > 20 \text{GeV}, |\eta_e| < 2.47, |\eta_\mu| < 2.4$ (исключая щель в кал-ре для e) изолированные лептоны, противоположный заряд, $66 < m_{\ell\ell} < 116 \text{GeV}$
- Фон QCD из фитирования формы распределения *m*_{ℓℓ} и изучения контрольных областей в плоскости (*iso*, *m*_{ℓℓ})
- ullet $\sim 10-12 K$ кандидатов с фоном в 1-2%

χ^2 definition

$$\chi_{\exp}^{2}(\mathbf{m}, \mathbf{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j} - \mu^{i}\right]^{2}}{\delta_{i, \text{stat}}^{2} \mu^{i} m^{i} + \left(\delta_{i, \text{uncor}} m^{i}\right)^{2}} + \sum_{j} b_{j}^{2}.$$
(1)

Here μ^i is the measured value at a point *i* and γ_j^i , $\delta_{i,\text{stat}}$ and $\delta_{i,\text{uncor}}$ are relative correlated systematic, relative statistical and relative uncorrelated systematic uncertainties, respectively. The function χ^2_{\exp} depends on the predictions m^i for the measurements (denoted as the vector **m**) and the shifts of correlated systematic error sources b_j (denoted as **b**). For the reduced cross-section measurements $\mu^i = \sigma_r^i$, *i* denotes a (x, Q^2) point, and the summation over *j* extends over all correlated systematic sources.

- HERA combined H1-ZEUS data, NC and CC.
- ATLAS W, Z data.

・ロト ・西ト ・モト ・モト

12

Parameterise PDFs using a standard form

 $xf(x) = Ax^{B}(1-x)^{C}(1+Dx+...)$

where *D*, *E*, ... are added only if they bring significant improvement in the fit ("parameterisation scan").

Use linear combinations of PDFs at the input evolution scale Q_0^2 to which data are sensitive. Use 5 combinations:

 $xg, xd_{val} = x(d - \overline{d}), xu_{val} = x(u - \overline{u}), x\overline{d}, x\overline{u}, x\overline{s}$

For strange sea, assume same B power as for d

 $x\bar{s} = xs = r_s A_{\bar{d}} x^{B_{\bar{d}}} (1-x)^{C_s}$

Heavy flavours xc, xb are predicted using VFNS, prescription of RT. Vary m_c, m_b .

7

Apply extra constraint: assume $x\overline{u} = x\overline{d}$ for $x \to 0$.

4 日 > 4 日 > 4 日 > 4 日 > 日 今 4 日 > 1 日 今 4 日 今 6

Effect of f_s change on the x-section predictions

Ratio of predictions with $r_s = 1.0$ to $r_s = 0.5$ shows that the change occurs for Z cross sections while W^{\pm} are affected less.

2.5 m

Э

Ratio of the data over prediction for Z shows shape common for MSTW08, HERAPDF1.5, ABKM09 sets — all have $r_s \sim 0.5$.

(日) (문) (문) (문)

Sensitivity check: scan of f_s (NLO)

 χ^2 scan of $f_s = r_s/(1 + r_s)$ shows that HERA data are indeed almost insensitive to f_s . Adding W^{\pm} data does not help much. Z data have sensitivity by their own, adding W^{\pm} helps to control normalisation, gives optimal constraint.

<ロ> (四) (四) (三) (三) (三)

크