Эффекты динамического нарушения симметрий в плотной кварковой среде с учетом граничных условий и неоднородности конденсатов в четырехфермионных моделях

Хунджуа Тамаз Григорьевич

Семинар отделения теоретической физики ИФВЭ г.Протвино

7 мая 2013 г.

#### Введение

- Описаны основные свойства плотной кварковой материи
- Обоснована необходимость применения эффективных моделей
- Поставлена задача и обоснована ее актуальность

Глава 1 – Модели с четырехфермионным взаимодействием

Глава 2 - Пионная кондесация в модели ГН

Глава 3 – Неоднородные дикварковый и киральный конденсаты в модели ГН

#### Заключение

#### Введение

### Глава 1 - Модели с четырехфермионным взаимодействием

- Описана модель Намбу-Йоно-Лазинио
- Описана модель Гросса-Невё и изучен ее фазовый портрет
- Описаны основные виды пространственно неоднородных конденсатов

### Глава 2 - Пионная кондесация в модели ГН

Глава 3 – Неоднородные дикварковый и киральный конденсаты в модели ГН

### Заключение

#### Введение

Глава 1 – Модели с четырехфермионным взаимодействием

#### Глава 2 - Пионная кондесация в модели ГН

- Описан эффект пионной конденсации в рамках модели ГН
- ullet В случае  $\mu=0$  ТДП удалось записать в аналитическом виде
- Исследовано влияние конечного объема взаимодействия на эффект ПК

Глава 3 – Неоднородные дикварковый и киральный конденсаты в модели ГН

### Заключение

#### Введение

Глава 1 - Модели с четырехфермионным взаимодействием

Глава 2 – Пионная кондесация в модели ГН

### Глава 3 – Неоднородные дикварковый и киральный конденсаты в модели ГН

- Описан эффект сверхпроводимости в рамках модели ГН
- Исследовано влияние ВКП на сверхпроводящую фазу
- Исследована возможность образования неоднородной сверхпроводящей фазы

#### Заключение

Тамаз Хунджуа

#### Введение

Глава 1 - Модели с четырехфермионным взаимодействием

Глава 2 - Пионная кондесация в модели ГН

Глава 3 – Неоднородные дикварковый и киральный конденсаты в модели ГН

#### Заключение

- Резюмированы полученные оригинальные результаты
- Подведены итоги исследований

# Введение

### Адронная материя

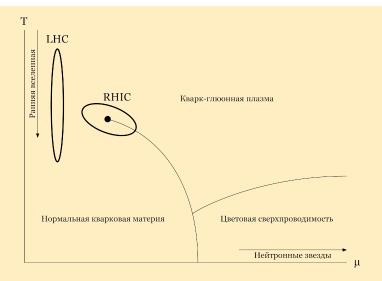
В ходе экспериментов по столкновению тяжелых ионов образуются сгустки сверхплотной материи, изучению которой в последнее время уделяется повышенное внимание. При достижении критических значений плотности доминирующую роль начинают играть кварки. Фундаментальной теорией сильных взаимодействий является квантовая хромодинамика (КХД).

#### Основные свойства КХД

- Калибровочная симметрия
- Перенормируемость
- Асимптотическая свобода
- Размерная трансмутация

При описании коллективных эффектов горячей кварковой материи используется модифицированная КХД с учетом ненулевых температуры и плотности.

### Фазовый портрет адронной материи



### Эффективные теории

При описании коллективных эффектов дальнего порядка константа связи становится слишком большой для применения пертурбативной техники. Поэтому используются эффективные модели. Самой популярной из них стала модель четырехфермионного взаимодействия.

В (3+1)-мерном пространстве (Nambu-Jono-Lasinio, 1961) четырехфермионная модель неперенормируема, а в (1+1)-мерном (Gross-Neveu, 1974) — перенормруема.

### Эффективная модель Гросса-Неве в пространстве размерности (1+1)

- Перенормируема
- Ассимптотически свободна
- Описывает динамическое нарушение симметрий
- Обладает явлением размерной трансмутации
- Имеет схожий с КХД фазовый портрет

### Пионная конденсация в модели Гросса-Невё

### Исходный Лагранжиан модели

$$\mathcal{L}_{q,\overline{q}} = \overline{q} \left[ \gamma^{\nu} i \partial_{\nu} - m_{0} + \mu \gamma^{0} + \frac{\mu_{I}}{2} \tau_{3} \gamma^{0} \right] q + \frac{G}{N_{c}} \left[ (\overline{q}q)^{2} + (\overline{q} i \gamma^{5} \overrightarrow{\tau} q)^{2} \right]$$

#### Обозначения

- ullet Двух компонентный Дираковский спинор  $q(x) \equiv q_{ilpha}(x)$  является дублетом по ароматам (i=u,d) и  $N_c$ -плетом по цветам  $(lpha=1,\ldots,N_c)$
- $\bullet$   $\tau_k(k=1,2,3)$  матрицы Паули
- µ барионный химический потенциал
- μ<sub>I</sub> изотопический химический потенциал

 $^a$ Гамма матрицы Дирака имеют следующее представление  $\gamma^0=\sigma_1; \gamma^1={
m i}\sigma_2; \gamma^5=\sigma_3.$ 

## Исходный Лагранжиан модели

$$\mathcal{L}_{q,\overline{q}} = \overline{q} \left[ \gamma^{\nu} i \partial_{\nu} - m_{0} + \mu \gamma^{0} + \frac{\mu_{I}}{2} \tau_{3} \gamma^{0} \right] q + \frac{G}{N_{c}} \left[ (\overline{q}q)^{2} + (\overline{q} i \gamma^{5} \overrightarrow{\tau} q)^{2} \right]$$

#### Симметрии

- Если  $\mu_I = 0$  и  $m_0 = 0$ , лагранжиан инвариантен относительно преобразований киральной  $SU_L(2) \times SU_R(2)$  группы
- Если  $\mu_I \neq 0$  и  $m_0 = 0$ , симметрия нарушается до  $U_{l_3L}(1) \times U_{l_3R}(1)$  <sup>a</sup>
- Если  $\mu_I \neq 0$  и  $m_0 \neq 0$  симметрия лагранжиана  $U_{I_3}$
- $\bullet$  Симметрия относительно  $SU(N_c)$ -группы реализуется во всех случаях

 $^{a}$ Группа может быть представлена, как  $U_{l_3}(1) imes U_{Al_3}(1)$ , где

 $U_{l_3}(1)$  изоспиновая подгруппа ( $q \to e^{i\alpha \tau_3} q$ ), а

 $U_{A/2}(1)$  аксиально-изоспиновая  $(q o {
m e}^{ilpha\gamma^5 au_3}q)$ 

### Линеаризация

Линеаризованный Лагранжиан, который содержит составные бозонные поля  $\sigma(x)$  и  $\pi_{\sigma}(x)$ , имеет следующую форму:

$$\mathcal{L}_{\sigma,\pi} = \left[ \gamma^{\nu} \mathrm{i} \partial_{\nu} - m_{0} + \mu \gamma^{0} + \frac{\mu_{I}}{2} \tau_{3} \gamma^{0} - \sigma - \mathrm{i} \gamma^{5} \pi_{\sigma} \tau_{\sigma} \right] q - \frac{N_{c}}{4G} \left[ \sigma \sigma + \pi_{\sigma} \pi_{\sigma} \right],$$

где

$$\sigma(x) = -2\frac{G}{N_c}(q); \quad \pi_a(x) = -2\frac{G}{N_c}(\mathrm{i}\gamma^5\tau_a q).$$

Составные бозонные поля преобразуются следующим образом:

$$egin{aligned} U_{I_3}(1): & \sigma 
ightarrow \sigma; & \pi_3 
ightarrow \pi_3; \ & \pi_1 
ightarrow \cos(2lpha)\pi_1 + \sin(2lpha)\pi_2; \ & \pi_2 
ightarrow \cos(2lpha)\pi_2 - \sin(2lpha)\pi_1; \end{aligned}$$

### Эффективное действие

Эффективное действие  $S_{\rm eff}[\sigma,\pi_a]$  в приближении  $N_c \to \infty$ , может быть найдено с помощью выражения:

$$\mathrm{e}^{\mathrm{i}\mathsf{S}_{\mathrm{eff}}[\sigma,\pi_{\sigma}]}=\int [d\overline{q}][dq]\mathrm{e}^{\mathrm{i}\int d^2x\mathcal{L}_{\sigma,\pi}}.$$

Взяв континуальный интеграл по фермионным полям и прологарифмировав, получим следующее выражение:

$$S_{\mathrm{eff}}(\sigma,\pi_{\sigma}) = -N_c \int \frac{\sigma^2 + \pi_{\sigma}^2}{4G} d^2x - \mathrm{i}N_c \mathrm{Tr}_{sfx} \mathrm{ln}D,$$

где

$$D = i\gamma^{\nu}\partial_{\nu} - m_0 + \mu\gamma^0 + \frac{\mu_I}{2}\tau_3\gamma^0 - \sigma - i\gamma^5\pi_{\alpha}\tau_{\alpha}.$$

Tr-оператор соответствует следу по спинорным (s), ароматовым (f) и пространственным (х) индексам соответственно.

Тамаз Хунджуа 10 / 50

### Термодинамический потенциал

Исходя из выражения для  $\mathcal{S}_{\rm eff}[\sigma,\pi_{\sigma}]$  можно получить термодинамический потенциал (ТДП) модели при нулевой температуре (T=0) в приближении среднего поля ( $N_c \to \infty$ ):

$$\begin{split} \Omega_{\mu\mu_{I}}(\sigma,\pi_{\sigma}) &\equiv -\frac{\mathcal{S}_{\mathrm{eff}}(\sigma,\pi_{\sigma})}{N_{c}\int d^{2}x}\bigg|_{\sigma,\pi_{\sigma}=\mathrm{const}} = \frac{\sigma^{2}+\pi_{\sigma}^{2}}{4G} + \mathrm{i}\frac{\mathrm{Tr}_{sfx}\mathrm{ln}D}{\int d^{2}x} \\ &= \frac{\sigma^{2}+\pi_{\sigma}^{2}}{4G} + \mathrm{i}\mathrm{Tr}_{sf}\int \frac{d^{2}p}{(2\pi)^{2}}\mathrm{ln}(\not{p}-m_{0}+\mu\gamma^{0}+\frac{\mu_{I}}{2}\tau_{3}\gamma^{0}-\sigma-\mathrm{i}\gamma^{5}\pi_{\sigma}\tau_{\sigma}), \end{split}$$

где поля  $\underline{\sigma}$  и  $\pi_a$  не зависят от пространственной переменной (x), а в круглых скобках  $\overline{D}$  - импульсное представление оператора Дирака D.

Термодинамический потенциал зависит от комбинации бозонных полей:  $(\pi_1^2+\pi_2^2)$ , которая инвариантна относительно группы  $U_{I_3}(1)$ . В этом случае, без потери общности, можно положить  $\pi_2=0$  и изучать ТДП как функцию только двух переменных:  $\pmb{M}\equiv \sigma+m_0$  и  $\Delta\equiv\pi_1$ . Тогда ТДП имеет следующий вид:

$$\Omega_{\mu\nu}(M,\Delta) = rac{(M-m_0)^2 + \Delta^2}{4G} - \int\limits_{-\infty}^{\infty} rac{d
ho_1}{2\pi} \{E_{\Delta}^+ + E_{\Delta}^- + (\mu - E_{\Delta}^+) heta(\mu - E_{\Delta}^+) + (\mu - E_{\Delta}^-) heta(\mu - E_{\Delta}^-) \},$$

где

$$\begin{split} E_{\Delta}^{\pm} &= \sqrt{\left(\sqrt{\rho_1^2 + \textit{M}^2} \pm \frac{\mu_I}{2}\right)^2 + \Delta^2} \equiv \sqrt{(\textit{E} \pm \nu)^2 + \Delta^2}; \\ E &= \sqrt{\rho_1^2 + \textit{M}^2}, \quad \nu = \frac{\mu_I}{2}. \end{split}$$

#### Перенормированный термодинамический потенциал

$$\begin{split} \Omega_{\mu\nu}(\textit{M},\Delta) &= \textit{V}_{0}(\textit{M},\Delta) - \frac{\textit{Mm}_{r}}{2} - \int\limits_{-\infty}^{\infty} \frac{\textit{d}\rho_{1}}{2\pi} \{ \textit{E}_{\Delta}^{+} + \textit{E}_{\Delta}^{-} - 2\sqrt{\rho_{1}^{2} + \textit{M}^{2} + \Delta^{2}} + \\ & (\mu - \textit{E}_{\Delta}^{+})\theta(\mu - \textit{E}_{\Delta}^{+}) + (\mu - \textit{E}_{\Delta}^{-})\theta(\mu - \textit{E}_{\Delta}^{-}) \}, \end{split}$$

где

### Перенормированный вакуумный термодинамический потенциал

$$\left. V_0(\emph{M},\Delta) \equiv \Omega_{\mu 
u}(\emph{M},\Delta) \right|_{\mu=\mu_r=0} = rac{\emph{M}^2+\Delta^2}{2\pi} \left[ \ln \left( rac{\emph{M}^2+\Delta^2}{\emph{M}_0^2} 
ight) - 1 
ight], a \; \emph{m}_r \equiv rac{\emph{m}_0}{\emph{G}(\Lambda)}$$

Процедура перенормировки сопровождается явлением размерной трансмутации. Более того, в вакууме киральная симметрия  $SU_L(2) \times SU_R(2)$  всегда спонтанно нарушена, а величина  $M_0$  соответствует динамической массе кварка.

### Учет конечного объема

Вложим нашу двумерную модель в область пространства ограниченную следующим образом 0 < x < L. В этом случае мы рассматриваем модель в пространстве-времени с топологией  $R^1 \times S^1$ , что накладывает на квантовые поля следующее условие:

$$q(t,x+L)=q(t,x).$$

В результате чего, для получения термодинамического потенциала  $\Omega_{Luv}(M,\Delta)$  в пространстве ограниченном условием  $0 \le x \le L$  и не нулевыми химическими потенциалами  $\mu, \nu$ , необходимо заменить интегрирование на бесконечное суммирование, используя следующее правило:

$$\int_{-\infty}^{\infty} \frac{d\rho_1}{2\pi} f(\rho_1) \to \frac{1}{L} \sum_{n=-\infty}^{\infty} f(\rho_{1n}) \quad \rho_{1n} = \frac{2n\pi}{L}, \quad n = 0, \pm 1, \pm 2, \dots$$

Тамаз Хунджуа 14 / 50

### Термодинамический потенциал в пространстве $R^1 \times S^1$

$$\begin{split} \Omega_{L\mu\nu}(\textit{M},\Delta) &= \textit{V}_{L}(\rho) - \frac{\textit{Mm}_{r}}{2} - \frac{1}{L} \sum_{n=-\infty}^{\infty} \Big\{ E_{L\Delta n}^{+} + E_{L\Delta n}^{-} - 2\sqrt{\rho^{2} + \frac{\pi^{2}}{L^{2}}(2n + \phi)^{2}} \\ &+ (\mu - E_{L\Delta n}^{+})\theta(\mu - E_{L\Delta n}^{+}) + (\mu - E_{L\Delta n}^{-})\theta(\mu - E_{L\Delta n}^{-}) \Big\}, \end{split}$$

где  $\rho = \sqrt{M^2 + \Delta^2}$ , и

$$E_{L\Delta n}^{\pm} = \sqrt{\left(\sqrt{\mathit{M}^2 + rac{\pi^2}{L^2}(2n+\phi)^2} \pm 
u
ight)^2 + \Delta^2}.$$

Выражение для плотности барионной материи  $n_{aL}$  в пространстве  $R^1 \times S^1$ 

$$n_{qL} \equiv -rac{\partial\Omega_{L\mu
u}}{\partial\mu} = rac{1}{L}\sum_{n=-\infty}^{\infty}\Big\{ heta(\mu-E_{L\Delta n}^+) + heta(\mu-E_{L\Delta n}^-)\Big\}.$$

15 / 50 Тамаз Хунджуа

### Термодинамический потенциал в пространстве $R^1 imes S^1$

$$\Omega_{L\mu\nu}(M,\Delta) = V_L(\rho) - \frac{Mm_r}{2} - \frac{1}{L} \sum_{n=-\infty}^{\infty} \left\{ E_{L\Delta n}^+ + E_{L\Delta n}^- - 2\sqrt{\rho^2 + \frac{\pi^2}{L^2}(2n+\phi)^2} \right. \\
+ (\mu - E_{L\Delta n}^+)\theta(\mu - E_{L\Delta n}^+) + (\mu - E_{L\Delta n}^-)\theta(\mu - E_{L\Delta n}^-) \right\},$$

где  $ho=\sqrt{\textit{M}^2+\Delta^2}$ , и

$$\mathcal{E}_{L\Delta n}^{\pm} = \sqrt{\left(\sqrt{\mathit{M}^2 + rac{\pi^2}{L^2}(2n+\phi)^2} \pm 
u
ight)^2 + \Delta^2}.$$

### Безразмерные величины

$$\lambda = \frac{\pi}{L M_0} \quad \tilde{\mu} = \frac{\mu}{M_0}, \quad \tilde{\nu} = \frac{\nu}{M_0} \equiv \frac{\mu_I}{2 M_0}, \quad m = \frac{M}{M_0}, \quad \delta = \frac{\Delta}{M_0},$$

## Фазовый портрет

#### Уравнение щели

$$\frac{\partial\Omega_{\tilde{\mu}\tilde{\nu}}(\textbf{\textit{m}},\delta)}{\partial\textbf{\textit{m}}}=0;\quad \frac{\partial\Omega_{\tilde{\mu}\tilde{\nu}}(\textbf{\textit{m}},\delta)}{\partial\delta}=0.$$

Координаты точки глобального минимума термодинамического потенциала m и  $\delta$  пропорциональны основному состоянию  $<\overline{q}q>$  и  $<\overline{q}i\gamma^5\tau_1q>$ .

- Если  $m = 0, \delta = 0$ , исходная симметрия  $U_{l_3}(1) \times U_{Al_3}(1)$  сохраняется;
- Если  $m \neq 0, \delta = 0$ , в модели реализуется симметрия  $U_{l_3}(1)$ ;
- Если  $m=0, \delta \neq 0$ , в модели реализуется симметрия  $U_{Al_3}(1)$ , при которой пионы конденсированы и изоспиновая симметрия  $U_{l_3}(1)$ , спонтанно нарушена;
- Случай с  $m \neq 0, \delta \neq 0$  соответствует полному нарушению симметрий

# Частный случай $\mu = \nu = \lambda = 0$

Введем безразмерный параметр  $\alpha$  по следующей формуле:  $m_r \equiv \alpha M_0/\pi$ .

### Термодинамический потенциал

$$\Omega(M,\Delta) = \frac{M^2 + \Delta^2}{2\pi} \left[ \ln \left( \frac{M^2 + \Delta^2}{M_0^2} \right) - 1 \right] - \frac{\alpha M_0 M}{2\pi}.$$

### Уравнение щели

$$\begin{split} &\frac{\partial\Omega(\textit{M},\Delta)}{\partial\textit{M}} = 2\textit{M} \ln\left(\frac{\textit{M}^2 + \Delta^2}{\textit{M}_0^2}\right) - \alpha \textit{M}_0 = 0, \\ &\frac{\partial\Omega(\textit{M},\Delta)}{\partial\Delta} = 2\Delta \ln\left(\frac{\textit{M}^2 + \Delta^2}{\textit{M}_0^2}\right) = 0. \end{split}$$

Тамаз Хунджуа 17 / 50

# Частный случай $\mu=\nu=\lambda=0$

Введем безразмерный параметр  $\alpha$  по следующей формуле:  $\emph{m}_\emph{r} \equiv \alpha \emph{M}_0/\pi$ .

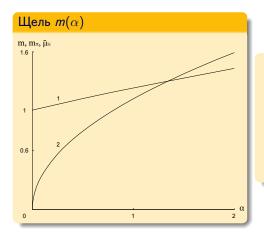
### Термодинамический потенциал

$$\Omega(M,\Delta) = \frac{M^2 + \Delta^2}{2\pi} \left[ \ln \left( \frac{M^2 + \Delta^2}{M_0^2} \right) - 1 \right] - \frac{\alpha M_0 M}{2\pi}.$$

### Уравнение щели

$$rac{ extbf{\textit{M}}}{ extbf{\textit{M}}_0} \ln \left(rac{ extbf{\textit{M}}}{ extbf{\textit{M}}_0}
ight)^2 = rac{lpha}{2} \implies extbf{\textit{m}} \ln extbf{\textit{m}} = rac{lpha}{4}, \ ext{где} \ extbf{\textit{m}} = rac{ extbf{\textit{M}}}{ extbf{\textit{M}}_0}$$

# Частный случай $\mu = \nu = \lambda = 0$



- Кривая 1 соответствует динамической массе кварка т
- Кривая 2 соответствует динамической массе  $\pi$ -мезона
- ullet Отношению  $rac{m}{m_{\pi}} = rac{350 ext{M} 
  extrm{3} ext{B}}{140 ext{M} 
  extrm{3} ext{B}} = rac{5}{2}$ соответствует  $\alpha = 0.17$

Тамаз Хунджуа 17 / 50

# Частный случай $\mu=0,\ \nu\neq0,\ \lambda=0$

### Термодинамический потенциал

$$\Omega_{
u}(\emph{M},\Delta) = rac{\emph{M}^2 + \Delta^2}{2\pi} \left[ \ln \left( rac{\emph{M}^2 + \Delta^2}{\emph{M}_0^2} 
ight) - 1 
ight] - rac{lpha \emph{M}_0 \emph{M}}{2\pi} - \ - \int\limits_{-\infty}^{\infty} rac{\emph{d} \emph{p}_1}{2\pi} \Big\{ \emph{E}_{\Delta}^+ + \emph{E}_{\Delta}^- - 2\sqrt{\emph{p}_1^2 + \emph{M}^2 + \Delta^2} \Big\}.$$

### ТДП выраженный через эллиптические интегралы

$$\begin{split} \Omega_{\nu}(\textit{M},\Delta) = & \frac{\textit{M}^2 + \Delta^2}{2\pi} \left[ \ln \left( \frac{\textit{M}^2 + \Delta^2}{\textit{M}_0^2} \right) + \textit{I}_{-1} + \textit{I}_{-1}' - 1 \right] + \\ & + \frac{\textit{M}}{4\pi} \left[ 2\alpha \textit{M}_0 + \textit{A}(\nu \textit{I}_1 + \textit{I}_0) - \textit{A}'(\nu \textit{I}_1' - \textit{I}_0') \right]. \end{split}$$

Тамаз Хунджуа 18 / 50

# Частный случай $\mu=0, \ \nu\neq 0, \ \lambda=0$

### Эллиптические интегралы в форме Вейерштрасса

$$I_0 = \int\limits_0^\infty \frac{du}{\sqrt{Au^3 + Bu^2 + Cu + 1}},$$

$$\mathbf{I_{-1}} = \int\limits_{rac{1}{\Lambda}}^{\infty} rac{du}{u\sqrt{Au^3 + Bu^2 + Cu + 1}}, \quad \mathbf{I_1} = \int\limits_{0}^{\Lambda} rac{udu}{\sqrt{Au^3 + Bu^2 + Cu + 1}}, \quad \mathsf{где}$$

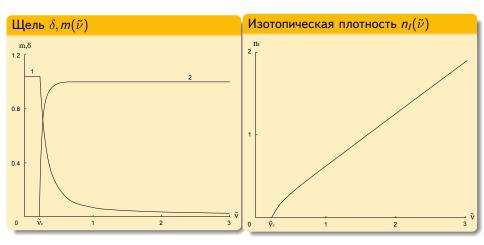
$$A = 2M((M + \nu)^{2} + \Delta^{2}),$$
  

$$B = 5M^{2} + 6M\nu + \nu^{2} + \Delta^{2},$$
  

$$C = 4M + 2\nu.$$

Тамаз Хунджуа 19 / 50

# Частный случай $\mu=0$ , $u\neq 0$ , $\lambda=0$



# Частный случай $\mu \neq \mathbf{0},~ \nu = \mathbf{0},~ \lambda = \mathbf{0}$

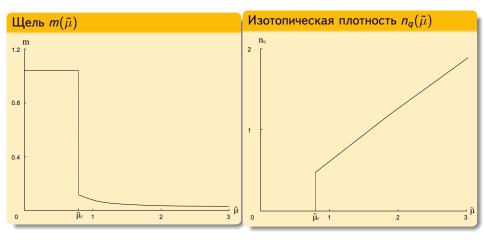
### Термодинамический потенциал

$$\Omega_{\mu}(\mathbf{M}, \Delta) = \frac{\mathbf{M}^2 + \Delta^2}{2\pi} \left[ \ln \left( \frac{\mathbf{M}^2 + \Delta^2}{\mathbf{M}_0^2} \right) - 1 \right] - \frac{\alpha \mathbf{M}_0 \mathbf{M}}{2\pi} + \frac{\theta(\mu - \sqrt{\mathbf{M}^2 + \Delta^2})}{\pi} \Omega'_{\mu}(\mathbf{M}, \Delta),$$

где

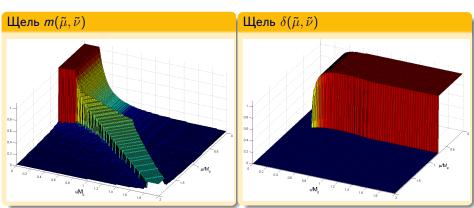
$$\Omega_{\mu}'(\textit{M},\Delta) = (\textit{M}^2 + \Delta^2) \ln \left( \frac{\mu + \sqrt{\mu^2 - \textit{M}^2 - \Delta^2}}{\sqrt{\textit{M}^2 + \Delta^2}} \right) - \mu \sqrt{\mu^2 - \textit{M}^2 - \Delta^2}.$$

# Частный случай $\mu \neq \mathbf{0},~ \nu = \mathbf{0},~ \lambda = \mathbf{0}$



## Фазовый портрет $(\tilde{\mu}, \tilde{\nu})$ при $\lambda = 0$

Для каждого значения  $\tilde{\mu}, \tilde{\nu}$  необходимо найти точку глобального минимума ТДП  $\Omega_{\tilde{\mu}\tilde{\nu}}(m,\delta)$  относительно переменных m и  $\delta$ . Таким образом результатом вычислений являются два трехмерных графика  $m(\tilde{\mu},\tilde{\nu})$  и  $\delta(\tilde{\mu},\tilde{\nu})$ .

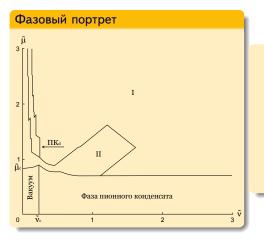


# Фазовый портрет $(\tilde{\mu}, \tilde{\nu})$ при $\lambda = 0$



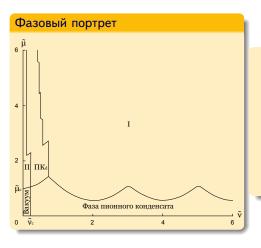
- В фазе I и II  $\delta = 0$ ,  $m \neq 0$ ,  $n_q \neq 0, n_l = 0;$
- B chase  $\Pi K \delta \neq 0$ ,  $m \neq 0$ ,  $n_a = 0, n_l \neq 0;$
- B Вакууме  $\delta = 0, m = 1.04,$  $n_q = 0$  ,  $n_l = 0$ ;

# Фазовый портрет $(\tilde{\mu}, \tilde{\nu})$ при $\lambda = 0.1$



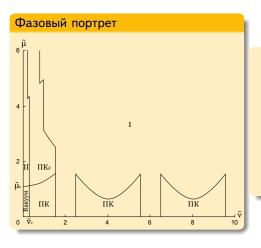
- В фазе I и II  $\delta = 0$ ,  $m \neq 0$ ,  $n_a \neq 0, n_l = 0;$
- B chase  $\Pi K \delta \neq 0$ ,  $m \neq 0$ ,  $n_a = 0, n_l \neq 0;$
- B chase  $\Pi K_d \delta \neq 0$ ,  $m \neq 0$ ,  $n_{I} \neq 0, n_{a} \neq 0;$
- B Вакууме  $\delta = 0, m = 1.04,$  $n_a = 0$  ,  $n_l = 0$ ;

# Фазовый портрет $(\tilde{\mu}, \tilde{\nu})$ при $\lambda = 1$



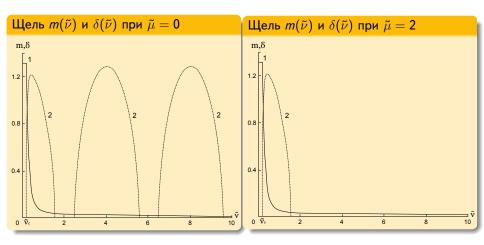
- В фазе I и II  $\delta = 0$ ,  $m \neq 0$ ,  $n_a \neq 0, n_l = 0;$
- B chase  $\Pi K \delta \neq 0$ ,  $m \neq 0$ ,  $n_a = 0, n_l \neq 0;$
- B chase  $\Pi K_d \delta \neq 0$ ,  $m \neq 0$ ,  $n_{I} \neq 0, n_{a} \neq 0;$
- B Вакууме  $\delta = 0, m = 1.04,$  $n_a = 0$  ,  $n_l = 0$ ;

# Фазовый портрет $(\tilde{\mu}, \tilde{\nu})$ при $\lambda = 2$



- В фазе I и II  $\delta = 0$ ,  $m \neq 0$ ,  $n_a \neq 0, n_l = 0;$
- B chase  $\Pi K \delta \neq 0$ ,  $m \neq 0$ ,  $n_q = 0, n_l \neq 0;$
- B chase  $\Pi K_d \delta \neq 0$ ,  $m \neq 0$ ,  $n_{I} \neq 0, n_{a} \neq 0;$
- B Вакууме  $\delta = 0, m = 1.04,$  $n_a = 0$  ,  $n_l = 0$ ;

# Фазовый портрет ( $\tilde{\mu}, \tilde{\nu}$ ) при $\lambda=2$



### Основные результаты раздела

- Описано явление пионной конденсации в рамках модели Гросса-Невё с учетом барионного  $\mu$  и изотопического  $\mu_I$  химических потенциалов.
- В случае нулевого барионного химического потенциала, используя эллиптические интегралы, удалось выразить эффективный потенциал модели в аналитическом виде и на его основе предсказать фазовый переход из вакуума в фазу пионной конденсации.
- В случае безграничного объема взаимодействия, что соответствует тривиальной топологии ( $R^1 \times R^1$ ), с помощью численных методов построен фазовый портрет модели в переменных  $(\mu, \nu)$  и исследована его структура.
- В случае ограниченного объема взаимодействия построена и изучена серия фазовых портретов в зависимости от размеров системы и условий периодичности.
- В случае периодических граничных условий образуется новая фаза пионной конденсации ПК<sub>d</sub>, которая, в отличие от классической фазы ПК, имеет ненулевую кварковую плотность.

Тамаз Хунджуа 28 / 50

### Публикации по материалам данного раздела

- В.Ч. Жуковский, К.Г. Клименко, Т.Г. Хунджуа.
   Пионная конденсация в модели Гросса-Неве // Вестник Московского Университета. 2010. Т. 3, № 1. с. 23.
- D. Ebert, T.G. Khunjua, K.G. Klimenko, V.Ch. Zhukovsky.
   Charged pion condensation phenomenon of dense baryonic matter induced by finite volume: the NJL<sub>2</sub> model consideration // Int.J.Mod.Phys. A. 2012. T. 27, № 27. c. 1250162.
- D. Ebert, T.G. Khunjua, K.G. Klimenko, V.Ch. Zhukovsky.
   Finite size effects in the Gross-Neveu model with isospin and baryonic chemical potentials // Proceedings of the Fifteen Lomonosov Conference on Elementary Particle Physics, Moscow, 18-24 August 2011/ Ed. by A. Studenikin. Singapore: World Scientific, 2013. Pp. 429-432.

Тамаз Хунджуа 29 / 50

# **Неоднородные киральный и дикварковый конденсаты в модели Гросса**—**Невё**

Тамаз Хунджуа 30 / 50

### Исходный лагранжиан модели

Исследования основаны на (1+1)-мерной модели Гросса-Неве с безмассовыми фермионами принадлежащими фундаментальному мультиплету O(N) ароматовой группы (Chodos et al., 1999).

$$\mathcal{L}_{\psi,\bar{\psi}} = \bar{\psi}_{k} \left[ \gamma^{\nu} i \partial_{\nu} + \mu \gamma^{0} \right] \psi_{k} + \frac{G_{1}}{N} \left[ \left( \bar{\psi}_{k} \psi_{k} \right)^{2} + \left( \bar{\psi}_{k} i \gamma^{5} \psi_{k} \right)^{2} \right] + \frac{G_{2}}{N} \left( \psi_{k}^{T} \epsilon \psi_{k} \right) \left( \bar{\psi}_{j} \epsilon \bar{\psi}_{j}^{T} \right),$$

#### Описание

- $\psi_k$  (k = 1, ..., N) представляет собой фундаментальный мультиплет группы O(N) и дираковсий спионор<sup>a</sup>;
- μ химический потенциал числа фермионов;

 $^{a}$ Матрицы дирака имеют следующий вид  $\gamma^{0}=\sigma_{1}; \gamma^{1}=\mathrm{i}\sigma_{2}; \gamma^{5}=\sigma_{3}$ 

Тамаз Хунджуа 31 / 50

### Исходный лагранжиан модели

Исследования основаны на (1+1)-мерной модели Гросса-Неве с безмассовыми фермионами принадлежащими фундаментальному мультиплету O(N) ароматовой группы (Chodos et al., 1999).

$$\mathcal{L}_{\psi,\bar{\psi}} = \bar{\psi}_{k} \left[ \gamma^{\nu} i \partial_{\nu} + \mu \gamma^{0} \right] \psi_{k} + \frac{G_{1}}{N} \left[ \left( \bar{\psi}_{k} \psi_{k} \right)^{2} + \left( \bar{\psi}_{k} i \gamma^{5} \psi_{k} \right)^{2} \right] + \frac{G_{2}}{N} \left( \psi_{k}^{T} \epsilon \psi_{k} \right) \left( \bar{\psi}_{j} \epsilon \bar{\psi}_{j}^{T} \right),$$

#### Симметрии

- ullet Относительно цветовой группы  $U(1): \psi_k o exp(i\alpha)\psi_k$
- Относительно киральной группы преобразований:  $\psi_k o \exp(i\alpha'\gamma^5)\psi_k$
- Относительно внутренней группы O(N)

Тамаз Хунджуа 31 / 50

### Линеаризованный лагранжиан модели

Введение составных бозонных полей  $\sigma(x)$ ,  $\pi(x)$ ,  $\Delta(x)$ ,  $\Delta^*(x)$ :

$$egin{aligned} \sigma(x) &= -2rac{G_1}{N}(ar{\psi}_k\psi_k), & \pi(x) &= -2rac{G_1}{N}(ar{\psi}_ki\gamma^5\psi_k), \ \Delta(x) &= -2rac{G_2}{N}(\psi_k^T\epsilon\psi_k), & \Delta^*(x) &= -2rac{G_2}{N}(ar{\psi}_k\epsilonar{\psi}_k^T), \end{aligned}$$

позволяет линеаризовать лагранжиан и привести его к виду:

$$\begin{split} \mathcal{L}_{\sigma,\pi,\Delta} &= \bar{\psi}_{\mathbf{k}} \Big[ \gamma^{\nu} i \partial_{\nu} + \mu \gamma^{0} - \sigma - i \gamma^{5} \pi \Big] \psi_{\mathbf{k}} - \frac{\mathbf{N}}{4G_{1}} (\sigma^{2} + \pi^{2}) - \frac{\mathbf{N}}{4G_{2}} \Delta^{*} \Delta - \\ &\quad - \frac{\Delta^{*}}{2} [\psi_{\mathbf{k}}^{T} \epsilon \psi_{\mathbf{k}}] - \frac{\Delta}{2} [\bar{\psi}_{\mathbf{k}} \epsilon \bar{\psi}_{\mathbf{k}}^{T}]. \end{split}$$

Тамаз Хунджуа 32 / 50

### Эффективное действие

Эффективное действие  $S_{\rm eff}[\sigma(x),\pi(x),\Delta(x)]$  в пределе  $N\to\infty$  может быть получено с помощью следующего выражения:

$$\mathsf{e}^{\mathsf{i} S_{\text{eff}}[\sigma(x),\pi(x),\Delta(x)]} = \int [\textit{d} \overline{\psi}] [\textit{d} \psi] \mathsf{e}^{\mathsf{i} \int \textit{d}^2 x \mathcal{L}_{\sigma,\pi,\Delta}}.$$

Величины полей основного сотояния  $\langle \sigma(x) \rangle$ ,  $\langle \pi(x) \rangle$ ,  $\langle \Delta(x) \rangle$  и  $\langle \Delta^*(x) \rangle$  определяются системой уравнений на поиск седловой точки:

$$rac{\delta \mathcal{S}_{ ext{eff}}}{\delta \sigma(x)} = 0, \qquad rac{\delta \mathcal{S}_{ ext{eff}}}{\delta \pi(x)} = 0, \qquad rac{\delta \mathcal{S}_{ ext{eff}}}{\delta \Delta(x)} = 0, \qquad rac{\delta \mathcal{S}_{ ext{eff}}}{\delta \Delta^*(x)} = 0.$$

Тамаз Хунджуа 33 / 50

### Неоднородные конденсаты

В вакууме, то есть в состоянии с нулевой плотностью частиц ( $\mu=0$ ), величины  $\langle \sigma(x) \rangle$ ,  $\langle \pi(x) \rangle$ ,  $\langle \Delta(x) \rangle$  и  $\langle \Delta^*(x) \rangle$  не зависят от пространственной координаты. Однако в плотной среде ( $\mu \neq 0$ ) эти величины могут иметь нетривиальную зависимость от координаты пространства. В данной работе мы рассматриваем следующий вид неоднородности:

$$\begin{split} \langle \sigma(x) \rangle &= \textit{M} \cos(2bx), \quad \langle \pi(x) \rangle = \textit{M} \sin(2bx), \\ \langle \Delta(x) \rangle &= \Delta \exp(-2ib'x), \quad \langle \Delta^*(x) \rangle = \Delta \exp(2ib'x). \end{split}$$

Таким образом, подставив данный анзац в выражение для эффективного действия  $S_{\rm eff}[\sigma(x),\pi(x),\Delta(x)]$  мы получим эффективное действие  $S_{\rm eff}[M,\Delta,b,b']$ .

Тамаз Хунджуа 34 / 50

### Термодинамический потенциал

Вычислив эффективное действие  $S_{\text{eff}}[M,\Delta,b,b']$ , можно записать выражение для термодинамического потенциала (ТДП):

$$\Omega(\emph{M},\emph{b},\emph{b}',\Delta) \equiv -rac{\mathcal{S}_{\mathrm{eff}}[\emph{M},\Delta,\emph{b},\emph{b}']}{\emph{N}\int\emph{d}^2x} = rac{\emph{M}^2}{4\emph{G}_1} + rac{\Delta^2}{4\emph{G}_2} + rac{\emph{i}}{2}\intrac{\emph{d}^2\emph{p}}{(2\pi)^2}\ln\Big(\lambda_1(\emph{p})\lambda_2(\emph{p})\Big),$$

где выражение для  $\lambda_{1,2}(p)$ :

$$\begin{split} \lambda_{1,2}(\rho) &= \rho_0^2 - \tilde{\mu}^2 - \rho_1^2 + b'^2 + M^2 - \Delta^2 \pm \\ &\pm 2\sqrt{M^2\rho_0^2 - M^2\rho_1^2 + \tilde{\mu}^2\rho_1^2 - 2\rho_0b'\tilde{\mu}\rho_1 + \rho_0^2b'^2}, \quad \tilde{\mu} = b - \mu. \end{split}$$

Численно-аналитический метод интегрирования

Тамаз Хунджуа 35 / 50

### Перенормировка и отношение констант связи

Очевидно, что ТДП ультрафиолетово расходится, поэтому необходимо провести процедуру перенормировки. Не останавливаясь на подробностях данной процедуры, следует отметить ее важные свойства.

#### Размерная трансмутация

$$G_1,G_2
ightarrow \delta=2\lnrac{G_1}{G_2}$$
 и  $M_1$ 

ТДП в вакууме ( $\mu = 0, T = 0$ )

$$V_0(\emph{M},\Delta) = \Delta^2(\delta-1) - \emph{M}^2 + (\emph{M}-\Delta)^2 \ln \left| rac{\emph{M}-\Delta}{\emph{M}_1} 
ight| + (\emph{M}+\Delta)^2 \ln \left( rac{\emph{M}+\Delta}{\emph{M}_1} 
ight)$$

Тамаз Хунджуа 36 / 50

### Вычисление фазового портрета

При рассмотрении ненулевой температуры T, термодинамический потенциал станет зависеть от двух внешних параметров  $\mu$  и T, а также от переменных  $M, \Delta, b, b'$ . Таким образом, перед нами стоит задача поиска минимума функции  $\Omega_{\mu,T}(M,\Delta,b,b')$  для каждого значения параметров  $\mu$  и T. Решением данной задачи является четыре трехмерных графика  $M(\mu, T)$ ;  $\Delta(\mu, T)$ ;  $b(\mu, T)$ ;  $b'(\mu, T)$ , удовлетворяющих условию минимума термодинамического потенциала:

$$\begin{split} \frac{\partial \Omega_{\mu,T}(\textbf{\textit{M}},\Delta,b,b')}{\partial \textbf{\textit{M}}} &= 0; \quad \frac{\partial \Omega_{\mu,T}(\textbf{\textit{M}},\Delta,b,b')}{\partial \Delta} = 0 \\ \frac{\partial \Omega_{\mu,T}(\textbf{\textit{M}},\Delta,b,b')}{\partial b} &= 0; \quad \frac{\partial \Omega_{\mu,T}(\textbf{\textit{M}},\Delta,b,b')}{\partial b'} = 0 \end{split}$$

Фазовый портрет модели является результатом совмещения этих графиков.

Тамаз Хунджуа 37 / 50

# Однородный случай (b=b'=0)





#### Критический химический потенциал

$$\mu_c = rac{M_1}{\sqrt{2}} \sqrt{1 - \mathrm{e}^{-\delta}} \ \implies$$
 при  $\delta o \infty$   $\mu_c = rac{M_1}{\sqrt{2}}$ 

Тамаз Хунджуа 38 / 50

# Неоднородный случай (b eq 0; b' eq 0)



#### Фазовый портрет для $\delta = -1$



- Фаза волны киральной плотности подавила фазу цветовой сверхпроводимости, при этом волновой вектор  $b=\mu$
- ullet Дикварковый конденсат остался однородным b'=0

Тамаз Хунджуа 39 / 50

### Подавление сверхпроводимости $\delta=1$





Тамаз Хунджуа 40 / 50

### Выводы

- Исследована фазовая структура модели с учетом возможности возникновения неоднородных конденсатов
- Обнаружен эффект подавления фазы цветовой сврехпроводимости волной киральной плотности
- Обнаружена тенденция дикваркового конденсата оставаться в пространственно однородном состоянии

Тамаз Хунджуа 41 / 50

### Публикации по материалам данного раздела

- В.Ч. Жуковский, К.Г. Клименко, Т.Г. Хунджуа. Влияние волны киральной плотности на сверхпроводящую фазу в двумерной модели Гросса-Невё // Вестник Московского Университета. 2013. T. 3, № 2. c. 11.
- Жуковский В.Ч., Клименко К.Г., Хунджуа Т.Г. Влияние волны киральной плотности на сверхпроводящую фазу в двумерной модели Гросса-Невё // Научная конференция "Ломоносовские чтения", секция физики, апрель 2013 года. Сборник тезисов докладов. - Москва: физ. ф-т. МГУ, 2013. - С. 149-152.

Тамаз Хунджуа 42 / 50

Основная задача состоит в интегрировании следующего выражения:

$$\Omega^{\textit{un}}(\textit{M}, \textit{b}', \Delta) = \frac{\textit{M}^2}{4\textit{G}_1} + \frac{\Delta^2}{4\textit{G}_2} + \frac{\textit{i}}{2} \int \frac{\mathrm{d}^2 p}{(2\pi)^2} \ln \left[ \lambda_1(\textit{p}) \lambda_2(\textit{p}) \right]$$

Перемножим  $\lambda_1$  и  $\lambda_2$ :

$$\begin{split} \lambda_1 \lambda_2 = & (\rho_0^2 - \tilde{\mu}^2 - \rho_1^2 + b'^2 + M^2 - \Delta^2)^2 - \\ & - 4(M^2 \rho_0^2 - M^2 \rho_1^2 + \tilde{\mu}^2 \rho_1^2 - 2\rho_0 b' \tilde{\mu} \rho_1 + \rho_0^2 b'^2) \end{split}$$

Раскроем скобки:

$$\begin{split} \lambda_1\lambda_2 &= \rho_0^4 - 2M^2\rho_0^2 - 2\Delta^2\rho_0^2 - 2\tilde{\mu}^2\rho_0^2 - 2b'^2\rho_0^2 - \rho_0^2\rho_1^2 + 4b'\tilde{\mu}\rho_0\rho_1 + \\ &+ \rho_1^4 + 2M^2\rho_1^2 + 2\Delta^2\rho_1^2 - 2\tilde{\mu}^2\rho_1^2 - 2b'^2\rho_1^2 - \rho_0^2\rho_1^2 + 4b'\tilde{\mu}\rho_0\rho_1 + \\ &+ M^4 + b'^4 + \Delta^4 + \tilde{\mu}^4 - 2b'^2\Delta^2 + 2b'^2M^2 - \\ &- 2\Delta^2M^2 - 2b'^2\tilde{\mu}^2 + 2\Delta^2\tilde{\mu}^2 - 2M^2\tilde{\mu}^2. \end{split}$$

Тамаз Хунджуа 43 / 50

Собрав одинаковые члены, получим:

$$\begin{split} \lambda_1 \lambda_2 &= \rho_0^4 - 2 \rho_0^2 (\textit{M}^2 + \Delta^2 + \tilde{\mu}^2 + \textit{b}'^2 + \rho_1^2) + \\ 8 \textit{b}' \tilde{\mu} \rho_1 \rho_0 + \rho_1^4 - 2 \rho_1^2 (\tilde{\mu}^2 + \textit{b}'^2 - \textit{M}^2 - \Delta^2) + \\ & (\Delta^2 - \textit{M}^2 + \tilde{\mu}^2 - \textit{b}'^2)^2. \end{split}$$

В упрощенной форме имеем:

$$\lambda_1 \lambda_2 = p_0^4 + \alpha p_0^2 + \beta p_0 + \gamma$$
, где

$$\begin{split} &\alpha = -2(\textit{M}^2 + \Delta^2 + \tilde{\mu}^2 + \textit{b}'^2 + \textit{p}_1^2) \\ &\beta = 8\textit{b}'\tilde{\mu}\textit{p}_1 \\ &\gamma = \textit{p}_1^4 - 2\textit{p}_1^2(\tilde{\mu}^2 + \textit{b}'^2 - \textit{M}^2 - \Delta^2) + (\Delta^2 - \textit{M}^2 + \tilde{\mu}^2 - \textit{b}'^2)^2. \end{split}$$

Тамаз Хунджуа 44 / 50

Благодаря основной теоремы алгебры можно утверждать, что:

$$\rho_0^4 + \alpha \rho_0^2 + \beta \rho_0 + \gamma = (\rho_0^2 + r\rho_0 + q)(\rho_0^2 - r\rho_0 + s)$$

Раскрыв скобки и приравняв коэффициенты получим:

$$\alpha = \mathbf{s} + \mathbf{q} - \mathbf{r}^2 \Rightarrow \alpha + \mathbf{r}^2 = \mathbf{s} + \mathbf{q}$$

$$\beta = \mathbf{r}\mathbf{s} - \mathbf{q}\mathbf{r} \quad \Rightarrow \frac{\beta}{\mathbf{r}} = \mathbf{s} - \mathbf{q}$$

$$\gamma = \mathbf{s}\mathbf{q},$$

Тамаз Хунджуа 45 / 50

Для связи коэффициентов  $\alpha,\beta,\gamma$  с коэффициентами r,s,q, мы должны решить следующее уравнение:

$$(\alpha + r^2)^2 - \left(\frac{\beta}{r}\right)^2 = (s+q)^2 - (s-q)^2 = 4sq = 4\gamma$$

Заменив переменные запишем его в следующем виде:

$$X^3 + AX^2 + BX + C = 0$$
, where  $X = r^2$  
$$A = 2\alpha = -4(M^2 + \Delta^2 + \tilde{\mu}^2 + b'^2 + \rho_1^2)$$
 
$$B = \alpha^2 - 4\gamma = 16 \left[ b'^2 \Delta^2 + M^2 \tilde{\mu}^2 + \Delta^2 M^2 + b'^2 \tilde{\mu}^2 + \rho^2 (\tilde{\mu}^2 + b'^2) \right]$$
 
$$C = \beta^2 = -(8b'\tilde{\mu}\rho_1)^2$$

Тамаз Хунджуа 46 / 50

Кубическое уравнение можно решить с помощью формулы Кордано. После этого, можно определить коэффициенты r, s, q:

$$r = \sqrt{X}$$

$$q = \frac{\alpha}{2} + \frac{r^2}{2} - \frac{\beta}{2r}$$

$$s = \frac{\alpha}{2} + \frac{r^2}{2} + \frac{\beta}{2r}$$

Тамаз Хунджуа 47 / 50

Вспомним, что наша основная задача вычислить следующий интеграл:

$$\begin{split} &\frac{\textit{i}}{2} \int \frac{\mathrm{d}^2 p}{(2\pi)^2} \ln \left[ \lambda_1(\rho) \lambda_2(\rho) \right] = \\ &= \frac{\textit{i}}{2} \int \frac{\mathrm{d}^2 p}{(2\pi)^2} \ln \left[ \rho_0^2 + \textit{r} p_0 + \textit{q} \right] + \frac{\textit{i}}{2} \int \frac{\mathrm{d}^2 p}{(2\pi)^2} \ln \left[ \rho_0^2 - \textit{r} p_0 + \textit{s} \right] = \\ &= \frac{\textit{i}}{2} \int \frac{\mathrm{d}^2 p}{(2\pi)^2} \ln \left[ \left( p_0 + \frac{\textit{r}}{2} \right)^2 - \left( \frac{\textit{r}^2}{4} - \textit{q} \right) \right] + \\ &+ \frac{\textit{i}}{2} \int \frac{\mathrm{d}^2 p}{(2\pi)^2} \ln \left[ \left( \rho_0 - \frac{\textit{r}}{2} \right)^2 - \left( \frac{\textit{r}^2}{4} - \textit{s} \right) \right]. \end{split}$$

Тамаз Хунджуа 48 / 50

Используя, известную формулу:

$$\int \frac{\mathrm{d} \mathrm{p}_0}{2\pi} \ln \left[ (\rho_0 + a)^2 - b^2 \right] = \frac{\mathit{i}}{2} \Big\{ |a - b| + |a + b| \Big\},$$

можно получить следующее выражение:

$$\begin{split} \frac{\emph{i}}{2} \int \frac{\mathrm{d}^2 p}{(2\pi)^2} \ln \left[ \lambda_1(\rho) \lambda_2(\rho) \right] = \\ - \int \frac{\mathrm{d} p_1}{8\pi} \left\{ \left| \frac{\emph{r}}{2} - \sqrt{\frac{\emph{r}^2}{4} - \emph{q}} \right| + \left| \frac{\emph{r}}{2} + \sqrt{\frac{\emph{r}^2}{4} - \emph{q}} \right| + \\ + \left| -\frac{\emph{r}}{2} - \sqrt{\frac{\emph{r}^2}{4} - \emph{s}} \right| + \left| -\frac{\emph{r}}{2} + \sqrt{\frac{\emph{r}^2}{4} - \emph{s}} \right| \right\} \end{split}$$

Тамаз Хунджуа 49 / 50

Итак, можно заключить, что выражение для ТДП проинтегрировано в общем виде. В ходе численных вычислений, нам удалось выяснить, что первые два модуля в предыдущем выражении раскрываются с положительным знаком, а вторые два с отрицательным. Следовательно оно упрощается до следующего вида:

$$rac{i}{2}\intrac{\mathrm{d}^2\mathrm{p}}{(2\pi)^2}\ln\left[\lambda_1(
ho)\lambda_2(
ho)
ight]=-\intrac{\mathrm{d}\mathrm{p}_1}{4\pi}r$$

Таким образом, нам необходимо для каждой переменной решать кубическое уравнение, а затем подставлять корень из X в данное выражение. V уже потом, численно, брать оставшийся интеграл по переменной  $p_1$ , не забывая конечно о соответствующей перенормировке.

Вернуться

Тамаз Хунджуа 50 / 50