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Abstract

In this talk we discuss the high-energy dependencies of diffractive and
non-diffractive inelastic cross-sections in view of the recent LHC data which
reveal a presence of the reflective scattering mode.
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Introduction
The measurements performed by the experiments ALICE, ATLAS , CMS, LHCb
and TOTEM at the LHC have confirmed an increase with energy of the total,
elastic and inelastic cross–sections, the trend earlier observed at lower energies
(cf. [1] for interpretation of the new data and the respective references). The
results of these measurements are bringing us closer to a revelation of the elusive
asymptotic regime of strong interactions.

The analysis of the data on elastic scattering obtained by the TOTEM at
√
s =

7 TeV has revealed an existence of the new regime in strong interaction dynamics,
related to transition to the new scattering mode described in [2, 3, 4, 5], anti-
shadowing or reflective scattering at very high energies. Experimentally, its ap-
pearance is manifested under a reconstruction of the elastic amplitude, elastic and
inelastic overlap functions in the impact parameter representation [6]. The nomen-
clature of reflective scattering is not a widely used one and should be clarified in
what follows.

The main issue of this note is related to discussion of the reflective scattering
mode, its influence and manifestation in the inelastic diffraction at the LHC. In
particular, an upper bound on the inelastic diffractive cross–section in the case
when this mode starts to be observed is obtained.

1 Reflective and absorptive scattering modes
The unitarity equation in the impact parameter representation assumes the two
scattering modes, which can be designated as absorptive and reflective ones and
the particular selection will be described below. An attractive feature of the impact
parameter picture is diagonalisation of the unitarity equation written for the elastic
scattering amplitude f(s, b), i.e.

Imf(s, b) = |f(s, b)|2 + hinel(s, b) (1)

at high energies with O(1/s) precision [8], with b being an impact parameter of
the colliding hadrons. The |f(s, b)|2 is the elastic channel contribution hel(s, b),
while the inelastic overlap function hinel(s, b) covers the sum of the contributions
from all the intermediate inelastic channels. The elastic scattering S-matrix ele-
ment is related to the elastic scattering amplitude f(s, b) by the equation S(s, b) =
1 + 2if(s, b) and can be represented in the form

S(s, b) = κ(s, b) exp[2iδ(s, b)]

with the two real functions κ(s, b) and δ(s, b). The function κ (0 ≤ κ ≤ 1) is
called an absorption factor: its value κ = 0 corresponds to a complete absorption
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of the initial state. At high energies the real part of the scattering amplitude is
small and can therefore be neglected, i.e. this fact allows the substitution f → if
in what follows. It also means that the function S(s, b) is real, but it does not have
a definite sign, i.e. it can be positive or negative.

In fact, the choice of elastic scattering mode, namely, absorptive or reflective
one, depends on the sign of the function S(s, b), i.e. on the phase δ(s, b) [7].
The standard assumption is that S(s, b) → 0 at the fixed impact parameter b and
s → ∞. This is called a black disk limit, and the elastic scattering is completely
absorptive. In this case the function S(s, b) is always non-negative. It also implies
the limitation f(s, b) ≤ 1/2.

There is an another option: the function S(s, b)→ −1 at fixed b and s →∞,
i.e. κ → 1 and δ = π/2. This phase can be interpreted as the geometric phase
related to the presence of singularity [5, 9].

Thus, the function S(s, b) can be negative in the certain region of s- and b
- values (i.e. at s > s0 and 0 ≤ b < r(s)). It happens, in particular, in the
Donnachie–Landshoff model (cf. [10] and the references therein) at the LHC
energies. But, this model does not preserve unitarity, the value of |S(s, b)| eventu-
ally exceeds unity at fixed impact parameter when the collision energy being high
enough, violating that way a probability conservation. At the LHC energies the
amplitude in this case, exceeds the black disk limit at small impact parameters,
but, the amplitude itself still obeys the unitarity limitation (cf. [11]).

The exceeding of the black disk limit is a principal conclusion of the model–
independent treatment of the impact parameter dependencies performed in paper
[6]. This analysis has demonstrated that f(s, b) is greater than black disk limit 1/2
at
√
s = 7 TeV, but the relative positive deviation α (f(s, b) = 1/2[1 + α(s, b)])

is small at this energy1.
The limiting case S(s, b) → −1 at fixed b and s → ∞ can be interpreted as

a pure reflective scattering using analogy with a reflection of the light in optics
[5]. The appearance of the reflective scattering can be associated with increasing
density of a scatterer with energy. It can be said that this density goes beyond the
critical value, corresponding to the black disk limit, and that the scatterer starts
to reflect the initial wave in addition to its absorption. The principal point of the
reflective scattering mode is that 1/2 < f(s, b) ≤ 1 and 0 > S(s, b) ≥ −1, as
allowed by unitarity relation [2, 3]. The selection of absorptive or reflective scat-
tering leads to the different values for the ratio σel(s)/σtot(s) at the asymptotical
energies, as it will be discussed in what follows.

Indeed, the arguments based on analyticity and unitarity of the scattering ma-

1The value of α is about 0.04 at this energy and b = 0 [6]. It should be stressed therefore,
that the most relevant objects to study starting deviation from the black disk limit are f(s, b) and
hel(s, b), but not hinel(s, b) since relative deviation in the latter function is of order α2, namely
hinel(s, b) = 1/4[1− α2(s, b)], where α(s, b) is positive in the region 0 ≤ b < r(s).
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trix have lead to conclusion that the Froissart-Martin bound [12, 13] on the to-
tal cross-sections would be saturated at the asymptotic energies [14]. The func-
tional energy dependence of the total cross-sections is often taken to have a ln2 s-
dependence at very high energies, but the value of the factor in front of ln2 s
remains to be an issue. The value of this factor is related to the choice of the
upper limit for the partial amplitude (or the amplitude in the impact parameter
representation). The value of this limit may correspond to the maximum of the
inelastic channel contribution to the elastic unitarity, when

σel(s)/σtot(s)→ 1/2, (2)

or it might correspond to a maximal value of the partial amplitude allowed by
unitarity resulting in the asymptotical limit

σel(s)/σtot(s)→ 1. (3)

The first option is to be an equivalent of a supposed absorptive nature of the scat-
tering, while the second option assumes an alternative which was interpreted as
a reflective scattering (cf. [5] and the above discussion). Assuming absorptive
nature of scattering the original Froissart-Martin bound on the total cross-sections
has been improved and an upper bound on the total inelastic cross–section reduced
by factor of 1/4 has been derived [15]. For the modern status of the bound on
the total cross–section and bound on the inelastic cross–section without unknown
constants see the recent papers [16] and [17].

It should be noted that the ratio σel(s)/σtot(s) is standing in front of ln2 s in
the asymptotical bound on the total cross-section [18]:

σtot(s) ≤
4π

t0

(
σel(s)

σtot(s)

)[
ln

(
s

σel(s)

)]2 [
1 +

(
ReF (s, t = 0)

ImF (s, t = 0)

)2
]−1

. (4)

We assumed for simplicity that the scale of s is to be determined by s0 = 1 GeV2,
but in fact, this scale is an energy-dependent one and is determined by σel(s) as
it is clear from Eq. (4),

√
t0 is the mass of the lowest state in the t channel2 and

F (s, t) is the elastic scattering amplitude related to f(s, b) by the Fourier-Bessel
transformation.

2 Modified upper bound on the inelastic diffraction
An assumption on absorptive nature of the scattering is a crucial issue for the
derivation of the Pumplin bound [19, 20], the upper bound for the cross-section of

2For most cases, t0 = 4m2
π .
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the inelastic diffraction3:

σdiff (s, b) ≤
1

2
σtot(s, b)− σel(s, b), (5)

where
σdiff (s, b) ≡

1

4π

dσdiff
db2

is the total cross–section of all the inelastic diffractive processes in the impact
parameter representation and, respectively,

σtot(s, b) ≡
1

4π

dσtot
db2

, σel(s, b) ≡
1

4π

dσel
db2

.

The Eq. (5) was obtained in the framework of the formalism where the inelastic
diffraction is considered to be a result of the different absorption of the relevant
states [22, 23]. The respective bound on the non-diffractive cross-section is the
following :

σndiff (s, b) ≥
1

2
σtot(s, b) (6)

since σndiff = σinel − σdiff . These relations, valid for each value of the impact
parameter of the collision, can be integrated over b:

σdiff (s) ≤
1

2
σtot(s)− σel(s) and σndiff (s) ≥

1

2
σtot(s). (7)

The experimental status of the Eq. (7) at the LHC energies has been discussed
recently in [1] and [24]. It was noted that conclusion on the large magnitude
of the inelastic diffraction cross-section follows from comparison of the inelastic
cross-section measurements performed by ATLAS [26] and CMS [27] with the
TOTEM. In order to reconcile the data of all experiments one needs to assume
large value for σdiff (s) and essential contribution from the low–mass region. As
it was noted in [24], an account for the contribution from this region would lead
to a resolution of the inconsistency in the different experimental results noted in
[25].

Thus, the data obtained at the LHC demonstrate an approximate energy–independence
of the ratio σdiff (s)/σinel(s) [28]. At

√
s = 7 TeV this ratio is about 1/3. The

ratio σdiff (s)/σel(s) is approximately equal to unity and

[σel(s) + σdiff (s)]/σtot(s) = 0.495+0.05
−0.06. (8)

The above numbers have been taken from [1].
3The more restrictive, but more complicated bounds have been obtained in [21] under the same

assumption on absorptive nature of scattering.
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But, in the framework of the absorptive scattering, Eqs. (2) and (7) should be
fulfilled simultaneously if the black disk limit is taking place asymptotically, i.e.

σinel(s)/σtot(s)→ 1/2 (9)

while
σdiff (s)/σtot(s)→ 0 (10)

and
σdiff (s)/σinel(s)→ 0 (11)

at s→∞.
The limits Eqs. (9-11) are in contradiction. Indeed, σdiff (s) should be, by def-

inition4, at least an asymptotically nonvanishing part of the inelastic cross–section
σinel(s). In contrast to this definition and the available data, one should conclude
from Eq. (11) that the inelastic diffractive processes constitute, in fact, a sub-
leading mechanism in the inelastic production and the main role in the increase of
σinel(s) is due to the non-diffractive inelastic processes. The above statement is
difficult to conform with existing experimental trends observed at the LHC.

There is no such an apparent contradiction in the approach assuming satura-
tion of the unitarity limit as it was discussed above. Indeed, the assumption that
unitarity limit is to be saturated asymptotically leads to a slower increase of the
inelastic cross-section, i.e. at s→∞

σinel(s)/σtot(s)→ 0. (12)

It allows one to keep considering the inelastic diffraction as a leading mechanism
responsible for the inelastic cross–section growth. In this approach the ratio of
the elastic to total cross-section Eq. (3) corresponds to energy increase of the
total inelastic cross-section slower than ln2 s while both Eqs. (3) and (12) take
place. And the available experimental data are consistent with decreasing ratio
σinel(s)/σtot(s) when the energy increases.

The model-independent reconstruction of the impact–parameter dependent quan-
tities from the experimental data demonstrates that the black disk limit has been
exceeded in the elastic scattering at small values of b [6]. In fact, the elastic scat-
tering S-matrix element S(s, b) ≡ 1−2f(s, b), where the elastic amplitude f(s, b)
is considered to be a real function, is negative at 0 < b < 0.2 fm and crosses zero
at b = 0.2 fm at

√
s = 7 TeV. In particular, this is consistent with the result of the

Tevatron data analysis [30].
The possibility of going beyond the black disk limit was discussed in the

framework of the rational unitarization and the CDF data obtained at Tevatron
4A common approach associates dynamics of the inelastic diffraction processes with one or

several Pomeron exchanges. Cf. [24, 29] for discussion.
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in [3]. It should be noted that the value of Imf(s, b = 0) has increased from 0.36
(CERN ISR) to 0.492± 0.008 (Tevatron) and it is close to exceeding or saturation
the black disk limit in this energy domain[30]. As it was noted [2, 3], exceeding
the black disk limit turns the derivation of the Pumplin bound to loose its ground.
In fact, this bound is not valid in the range of the small and moderate values of the
impact parameter, where the absorptive approach ceases to be applicable.

The Pumplin bound can easily be rewritten in terms of S(s, b) in the form

σdiff (s, b) ≤
1

4
S(s, b)[1− S(s, b)]. (13)

This inequality clearly indicates that this relation cannot be applied in the region
where S(s, b) is negative. This region is determined by the interval 0 < b < r(s),
where r(s) is the solution of the equation S(s, b) = 0 5. In the above mentioned
impact parameter range the obvious restriction

σdiff (s, b) ≤ σinel(s, b) (14)

can only be applied. In case of reflective scattering this obvious restriction is
not a completely trivial in view that σinel(s, b) has a peripheral impact parameter
dependence. But, at b ≥ r(s) the scattering is absorptive and, therefore, the
original bound on the inelastic diffractive cross–section should be valid.

However, the integrated over all values of b relation should be modified. Namely,
in this case it is to be written in the form

σ̄diff (s) ≤
1

2
σ̄tot(s)− σ̄el(s), (15)

where σ̄i(s) are the reduced cross-sections:

σ̄i(s) ≡ σi(s)− 8π

∫ r(s)

0

bdbσi(s, b),

and i ≡ diff, tot, el, respectively. Combining Eqs. ( 14) and ( 15), the following
inequalities relevant for the LHC energies, can easily be obtained:

σdiff (s) ≤ σinel(s)− 2π

∫ ∞
r(s)

bdb[1− S(s, b)] (16)

and
σndiff (s) ≥ 2π

∫ ∞
r(s)

bdb[1− S(s, b)]. (17)

5There is no inelastic diffraction at the impact parameter value where the black disk limit is
reached since S(s, b) = 0.
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The function S(s, b) can be reconstructed from the experimental data on dσ/dt
in elastic pp-scattering. Using TOTEM data at

√
s = 7 TeV and value of r(s)

extracted from their analysis 0.2 fm[6], one obtain the magnitude of the upper
bound on σdiff (s) at this energy equal to 25.6 mb. Positive contribution of reflec-
tive scattering to the bound at this energy is about 5%. Extrapolating data to the
energy

√
s = 13 TeV one can provide an estimate for the bound on σdiff (s) and

the reflective scattering contribution to it at the level of 28.2 mb and (6 − 8)%,
respectively6. Those numbers are not extremely large, but nonvanishing.

3 The model consideration
The unitary model for the S(s, b) can also be used to estimate qualitatively the
dependencies of the cross-sections σdiff (s) and σndiff (s). The reflective scatter-
ing is a characteristic picture of the model. It is based on the rational form of the
unitarization and represents the function S(s, b) in the form:

S(s, b) =
1− U(s, b)

1 + U(s, b)
, (18)

The U(s, b) is the generalized reaction matrix element, which is considered to be
an input dynamical quantity and it is taken to be a real function. The form (18)
is a one-to-one transform and is easily invertible. The various dynamical models
can be used for the function U(s, b). To get the qualitative estimates we use the
simplified form of this function which conforms to rising total cross-section and
analytical properties over the transferred momentum, i.e.

U(s, b) = g(s) exp(−µb), (19)

where g(s) ∼ sλ , λ and µ are the constants. Eq. (19) can also be motivated by
the model proposed by Heisenberg in 1952 [31].

Then the following asymptotical dependencies will take place7:

σtot(s) ∼ ln2 s, σel(s) ∼ ln2 s, σinel(s) ∼ ln s and r(s) ∼ ln s. (20)

From Eq. ( 16) it follows that for the ratio σdiff (s)/σinel(s) the inequality takes
place

σdiff (s)

σinel(s)
≤ 1− 2π

σinel(s)

∫ ∞
r(s)

bdb[1− S(s, b)]. (21)

6The extrapolated value of r(s) at this energy is about 0.3 fm.
7The explicit expressions for r(s) and σinel(s) are the following

r(s) =
1

µ
ln g(s) and σinel(s) =

8π

µ2
ln(1 + g(s)).
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From Eqs. ( 17) and ( 20) it follows that σndiff (s) ∼ ln s and second term in Eq.
(21) tends to 1/2 at s → ∞. In general, to exclude a subleading role of σdiff (s),
the factor in front of ln s in σndiff (s) should be different from the correspond-
ing factor in σinel(s) and the asymptotical dependence of the inelastic diffractive
cross-section would be σdiff (s) ∼ ln s. Thus, in this approach both parts of
σinel(s) would have similar asymptotical energy dependencies, which are propor-
tional to ln s, while the ratio of the inelastic diffractive to elastic cross–sections
would decrease asymptotically like 1/ ln s , i.e. the relation

σdiff (s)/σel(s)→ 0 (22)

will take place at s→∞.
It would be also interesting to speculate further and assume the saturation of

the bound Eq. (21). It would mean that an asymptotic equipartition of the inelastic
cross-section on diffractive and non-diffractive ones occurs.

Conclusion
Thus, one can say that, at least, there is no inconsistency between saturation of
the unitarity limit leading to Eq. (3) and the bound on the inelastic diffractive
cross–section in the case of reflective scattering, i.e. the reflective scattering limit
and the ratio

σdiff (s)/σinel(s)→ const.

at s→∞ can easily be reconciled. The energy-independent ratio σdiff (s)/σinel(s)
is also consistent with the commonly accepted definition of the inelastic diffrac-
tion as a result of the Pomeron exchanges and account for the recent experimental
trends found at the LHC.

Note, if one assumes mechanism resulting in saturation of the black disk limit
at the asymptotic energies, this is not the case. The black disk limit saturation is
usually motivated by the eikonal models. Those models reduce the range of the
possible variation of a partial amplitude by factor of 1/2. This reduction is not in
a direct inconsistency with the LHC data yet. However, the most recent analysis
provides the strong indications on possibility of crossing the values associated
with the black disk limit by the elastic amplitude [6]. Thus, it seems now difficult
to conform the behavior of the inelastic diffraction at the LHC energy range to the
assumption on the black disk limit saturation at s→∞.

The new LHC experiments at higher energies would be definitely helpful for
resolving the asymptotical dynamics of the inelastic diffraction and elastic scat-
tering.
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Introduction
The measurements performed by the experiments ALICE, ATLAS , CMS, LHCb
and TOTEM at the LHC have confirmed an increase with energy of the total,
elastic and inelastic cross–sections, the trend earlier observed at lower energies
(cf. [1] for interpretation of the new data and the respective references). The
results of these measurements are bringing us closer to a revelation of the elusive
asymptotic regime of strong interactions.


The analysis of the data on elastic scattering obtained by the TOTEM at
√
s =


7 TeV has revealed an existence of the new regime in strong interaction dynamics,
related to transition to the new scattering mode described in [2, 3, 4, 5], anti-
shadowing or reflective scattering at very high energies. Experimentally, its ap-
pearance is manifested under a reconstruction of the elastic amplitude, elastic and
inelastic overlap functions in the impact parameter representation [6]. The nomen-
clature of reflective scattering is not a widely used one and should be clarified in
what follows.


The main issue of this note is related to discussion of the reflective scattering
mode, its influence and manifestation in the inelastic diffraction at the LHC. In
particular, an upper bound on the inelastic diffractive cross–section in the case
when this mode starts to be observed is obtained.


1 Reflective and absorptive scattering modes
The unitarity equation in the impact parameter representation assumes the two
scattering modes, which can be designated as absorptive and reflective ones and
the particular selection will be described below. An attractive feature of the impact
parameter picture is diagonalisation of the unitarity equation written for the elastic
scattering amplitude f(s, b), i.e.


Imf(s, b) = |f(s, b)|2 + hinel(s, b) (1)


at high energies with O(1/s) precision [8], with b being an impact parameter of
the colliding hadrons. The |f(s, b)|2 is the elastic channel contribution hel(s, b),
while the inelastic overlap function hinel(s, b) covers the sum of the contributions
from all the intermediate inelastic channels. The elastic scattering S-matrix ele-
ment is related to the elastic scattering amplitude f(s, b) by the equation S(s, b) =
1 + 2if(s, b) and can be represented in the form


S(s, b) = κ(s, b) exp[2iδ(s, b)]


with the two real functions κ(s, b) and δ(s, b). The function κ (0 ≤ κ ≤ 1) is
called an absorption factor: its value κ = 0 corresponds to a complete absorption
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of the initial state. At high energies the real part of the scattering amplitude is
small and can therefore be neglected, i.e. this fact allows the substitution f → if
in what follows. It also means that the function S(s, b) is real, but it does not have
a definite sign, i.e. it can be positive or negative.


In fact, the choice of elastic scattering mode, namely, absorptive or reflective
one, depends on the sign of the function S(s, b), i.e. on the phase δ(s, b) [7].
The standard assumption is that S(s, b) → 0 at the fixed impact parameter b and
s → ∞. This is called a black disk limit, and the elastic scattering is completely
absorptive. In this case the function S(s, b) is always non-negative. It also implies
the limitation f(s, b) ≤ 1/2.


There is an another option: the function S(s, b)→ −1 at fixed b and s →∞,
i.e. κ → 1 and δ = π/2. This phase can be interpreted as the geometric phase
related to the presence of singularity [5, 9].


Thus, the function S(s, b) can be negative in the certain region of s- and b
- values (i.e. at s > s0 and 0 ≤ b < r(s)). It happens, in particular, in the
Donnachie–Landshoff model (cf. [10] and the references therein) at the LHC
energies. But, this model does not preserve unitarity, the value of |S(s, b)| eventu-
ally exceeds unity at fixed impact parameter when the collision energy being high
enough, violating that way a probability conservation. At the LHC energies the
amplitude in this case, exceeds the black disk limit at small impact parameters,
but, the amplitude itself still obeys the unitarity limitation (cf. [11]).


The exceeding of the black disk limit is a principal conclusion of the model–
independent treatment of the impact parameter dependencies performed in paper
[6]. This analysis has demonstrated that f(s, b) is greater than black disk limit 1/2
at
√
s = 7 TeV, but the relative positive deviation α (f(s, b) = 1/2[1 + α(s, b)])


is small at this energy1.
The limiting case S(s, b) → −1 at fixed b and s → ∞ can be interpreted as


a pure reflective scattering using analogy with a reflection of the light in optics
[5]. The appearance of the reflective scattering can be associated with increasing
density of a scatterer with energy. It can be said that this density goes beyond the
critical value, corresponding to the black disk limit, and that the scatterer starts
to reflect the initial wave in addition to its absorption. The principal point of the
reflective scattering mode is that 1/2 < f(s, b) ≤ 1 and 0 > S(s, b) ≥ −1, as
allowed by unitarity relation [2, 3]. The selection of absorptive or reflective scat-
tering leads to the different values for the ratio σel(s)/σtot(s) at the asymptotical
energies, as it will be discussed in what follows.


Indeed, the arguments based on analyticity and unitarity of the scattering ma-


1The value of α is about 0.04 at this energy and b = 0 [6]. It should be stressed therefore,
that the most relevant objects to study starting deviation from the black disk limit are f(s, b) and
hel(s, b), but not hinel(s, b) since relative deviation in the latter function is of order α2, namely
hinel(s, b) = 1/4[1− α2(s, b)], where α(s, b) is positive in the region 0 ≤ b < r(s).
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trix have lead to conclusion that the Froissart-Martin bound [12, 13] on the to-
tal cross-sections would be saturated at the asymptotic energies [14]. The func-
tional energy dependence of the total cross-sections is often taken to have a ln2 s-
dependence at very high energies, but the value of the factor in front of ln2 s
remains to be an issue. The value of this factor is related to the choice of the
upper limit for the partial amplitude (or the amplitude in the impact parameter
representation). The value of this limit may correspond to the maximum of the
inelastic channel contribution to the elastic unitarity, when


σel(s)/σtot(s)→ 1/2, (2)


or it might correspond to a maximal value of the partial amplitude allowed by
unitarity resulting in the asymptotical limit


σel(s)/σtot(s)→ 1. (3)


The first option is to be an equivalent of a supposed absorptive nature of the scat-
tering, while the second option assumes an alternative which was interpreted as
a reflective scattering (cf. [5] and the above discussion). Assuming absorptive
nature of scattering the original Froissart-Martin bound on the total cross-sections
has been improved and an upper bound on the total inelastic cross–section reduced
by factor of 1/4 has been derived [15]. For the modern status of the bound on
the total cross–section and bound on the inelastic cross–section without unknown
constants see the recent papers [16] and [17].


It should be noted that the ratio σel(s)/σtot(s) is standing in front of ln2 s in
the asymptotical bound on the total cross-section [18]:


σtot(s) ≤
4π


t0


(
σel(s)


σtot(s)


)[
ln


(
s


σel(s)


)]2 [
1 +


(
ReF (s, t = 0)


ImF (s, t = 0)


)2
]−1


. (4)


We assumed for simplicity that the scale of s is to be determined by s0 = 1 GeV2,
but in fact, this scale is an energy-dependent one and is determined by σel(s) as
it is clear from Eq. (4),


√
t0 is the mass of the lowest state in the t channel2 and


F (s, t) is the elastic scattering amplitude related to f(s, b) by the Fourier-Bessel
transformation.


2 Modified upper bound on the inelastic diffraction
An assumption on absorptive nature of the scattering is a crucial issue for the
derivation of the Pumplin bound [19, 20], the upper bound for the cross-section of


2For most cases, t0 = 4m2
π .
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the inelastic diffraction3:


σdiff (s, b) ≤
1


2
σtot(s, b)− σel(s, b), (5)


where
σdiff (s, b) ≡


1


4π


dσdiff
db2


is the total cross–section of all the inelastic diffractive processes in the impact
parameter representation and, respectively,


σtot(s, b) ≡
1


4π


dσtot
db2


, σel(s, b) ≡
1


4π


dσel
db2


.


The Eq. (5) was obtained in the framework of the formalism where the inelastic
diffraction is considered to be a result of the different absorption of the relevant
states [22, 23]. The respective bound on the non-diffractive cross-section is the
following :


σndiff (s, b) ≥
1


2
σtot(s, b) (6)


since σndiff = σinel − σdiff . These relations, valid for each value of the impact
parameter of the collision, can be integrated over b:


σdiff (s) ≤
1


2
σtot(s)− σel(s) and σndiff (s) ≥


1


2
σtot(s). (7)


The experimental status of the Eq. (7) at the LHC energies has been discussed
recently in [1] and [24]. It was noted that conclusion on the large magnitude
of the inelastic diffraction cross-section follows from comparison of the inelastic
cross-section measurements performed by ATLAS [26] and CMS [27] with the
TOTEM. In order to reconcile the data of all experiments one needs to assume
large value for σdiff (s) and essential contribution from the low–mass region. As
it was noted in [24], an account for the contribution from this region would lead
to a resolution of the inconsistency in the different experimental results noted in
[25].


Thus, the data obtained at the LHC demonstrate an approximate energy–independence
of the ratio σdiff (s)/σinel(s) [28]. At


√
s = 7 TeV this ratio is about 1/3. The


ratio σdiff (s)/σel(s) is approximately equal to unity and


[σel(s) + σdiff (s)]/σtot(s) = 0.495+0.05
−0.06. (8)


The above numbers have been taken from [1].
3The more restrictive, but more complicated bounds have been obtained in [21] under the same


assumption on absorptive nature of scattering.
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But, in the framework of the absorptive scattering, Eqs. (2) and (7) should be
fulfilled simultaneously if the black disk limit is taking place asymptotically, i.e.


σinel(s)/σtot(s)→ 1/2 (9)


while
σdiff (s)/σtot(s)→ 0 (10)


and
σdiff (s)/σinel(s)→ 0 (11)


at s→∞.
The limits Eqs. (9-11) are in contradiction. Indeed, σdiff (s) should be, by def-


inition4, at least an asymptotically nonvanishing part of the inelastic cross–section
σinel(s). In contrast to this definition and the available data, one should conclude
from Eq. (11) that the inelastic diffractive processes constitute, in fact, a sub-
leading mechanism in the inelastic production and the main role in the increase of
σinel(s) is due to the non-diffractive inelastic processes. The above statement is
difficult to conform with existing experimental trends observed at the LHC.


There is no such an apparent contradiction in the approach assuming satura-
tion of the unitarity limit as it was discussed above. Indeed, the assumption that
unitarity limit is to be saturated asymptotically leads to a slower increase of the
inelastic cross-section, i.e. at s→∞


σinel(s)/σtot(s)→ 0. (12)


It allows one to keep considering the inelastic diffraction as a leading mechanism
responsible for the inelastic cross–section growth. In this approach the ratio of
the elastic to total cross-section Eq. (3) corresponds to energy increase of the
total inelastic cross-section slower than ln2 s while both Eqs. (3) and (12) take
place. And the available experimental data are consistent with decreasing ratio
σinel(s)/σtot(s) when the energy increases.


The model-independent reconstruction of the impact–parameter dependent quan-
tities from the experimental data demonstrates that the black disk limit has been
exceeded in the elastic scattering at small values of b [6]. In fact, the elastic scat-
tering S-matrix element S(s, b) ≡ 1−2f(s, b), where the elastic amplitude f(s, b)
is considered to be a real function, is negative at 0 < b < 0.2 fm and crosses zero
at b = 0.2 fm at


√
s = 7 TeV. In particular, this is consistent with the result of the


Tevatron data analysis [30].
The possibility of going beyond the black disk limit was discussed in the


framework of the rational unitarization and the CDF data obtained at Tevatron
4A common approach associates dynamics of the inelastic diffraction processes with one or


several Pomeron exchanges. Cf. [24, 29] for discussion.
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in [3]. It should be noted that the value of Imf(s, b = 0) has increased from 0.36
(CERN ISR) to 0.492± 0.008 (Tevatron) and it is close to exceeding or saturation
the black disk limit in this energy domain[30]. As it was noted [2, 3], exceeding
the black disk limit turns the derivation of the Pumplin bound to loose its ground.
In fact, this bound is not valid in the range of the small and moderate values of the
impact parameter, where the absorptive approach ceases to be applicable.


The Pumplin bound can easily be rewritten in terms of S(s, b) in the form


σdiff (s, b) ≤
1


4
S(s, b)[1− S(s, b)]. (13)


This inequality clearly indicates that this relation cannot be applied in the region
where S(s, b) is negative. This region is determined by the interval 0 < b < r(s),
where r(s) is the solution of the equation S(s, b) = 0 5. In the above mentioned
impact parameter range the obvious restriction


σdiff (s, b) ≤ σinel(s, b) (14)


can only be applied. In case of reflective scattering this obvious restriction is
not a completely trivial in view that σinel(s, b) has a peripheral impact parameter
dependence. But, at b ≥ r(s) the scattering is absorptive and, therefore, the
original bound on the inelastic diffractive cross–section should be valid.


However, the integrated over all values of b relation should be modified. Namely,
in this case it is to be written in the form


σ̄diff (s) ≤
1


2
σ̄tot(s)− σ̄el(s), (15)


where σ̄i(s) are the reduced cross-sections:


σ̄i(s) ≡ σi(s)− 8π


∫ r(s)


0


bdbσi(s, b),


and i ≡ diff, tot, el, respectively. Combining Eqs. ( 14) and ( 15), the following
inequalities relevant for the LHC energies, can easily be obtained:


σdiff (s) ≤ σinel(s)− 2π


∫ ∞
r(s)


bdb[1− S(s, b)] (16)


and
σndiff (s) ≥ 2π


∫ ∞
r(s)


bdb[1− S(s, b)]. (17)


5There is no inelastic diffraction at the impact parameter value where the black disk limit is
reached since S(s, b) = 0.
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The function S(s, b) can be reconstructed from the experimental data on dσ/dt
in elastic pp-scattering. Using TOTEM data at


√
s = 7 TeV and value of r(s)


extracted from their analysis 0.2 fm[6], one obtain the magnitude of the upper
bound on σdiff (s) at this energy equal to 25.6 mb. Positive contribution of reflec-
tive scattering to the bound at this energy is about 5%. Extrapolating data to the
energy


√
s = 13 TeV one can provide an estimate for the bound on σdiff (s) and


the reflective scattering contribution to it at the level of 28.2 mb and (6 − 8)%,
respectively6. Those numbers are not extremely large, but nonvanishing.


3 The model consideration
The unitary model for the S(s, b) can also be used to estimate qualitatively the
dependencies of the cross-sections σdiff (s) and σndiff (s). The reflective scatter-
ing is a characteristic picture of the model. It is based on the rational form of the
unitarization and represents the function S(s, b) in the form:


S(s, b) =
1− U(s, b)


1 + U(s, b)
, (18)


The U(s, b) is the generalized reaction matrix element, which is considered to be
an input dynamical quantity and it is taken to be a real function. The form (18)
is a one-to-one transform and is easily invertible. The various dynamical models
can be used for the function U(s, b). To get the qualitative estimates we use the
simplified form of this function which conforms to rising total cross-section and
analytical properties over the transferred momentum, i.e.


U(s, b) = g(s) exp(−µb), (19)


where g(s) ∼ sλ , λ and µ are the constants. Eq. (19) can also be motivated by
the model proposed by Heisenberg in 1952 [31].


Then the following asymptotical dependencies will take place7:


σtot(s) ∼ ln2 s, σel(s) ∼ ln2 s, σinel(s) ∼ ln s and r(s) ∼ ln s. (20)


From Eq. ( 16) it follows that for the ratio σdiff (s)/σinel(s) the inequality takes
place


σdiff (s)


σinel(s)
≤ 1− 2π


σinel(s)


∫ ∞
r(s)


bdb[1− S(s, b)]. (21)


6The extrapolated value of r(s) at this energy is about 0.3 fm.
7The explicit expressions for r(s) and σinel(s) are the following


r(s) =
1


µ
ln g(s) and σinel(s) =


8π


µ2
ln(1 + g(s)).
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From Eqs. ( 17) and ( 20) it follows that σndiff (s) ∼ ln s and second term in Eq.
(21) tends to 1/2 at s → ∞. In general, to exclude a subleading role of σdiff (s),
the factor in front of ln s in σndiff (s) should be different from the correspond-
ing factor in σinel(s) and the asymptotical dependence of the inelastic diffractive
cross-section would be σdiff (s) ∼ ln s. Thus, in this approach both parts of
σinel(s) would have similar asymptotical energy dependencies, which are propor-
tional to ln s, while the ratio of the inelastic diffractive to elastic cross–sections
would decrease asymptotically like 1/ ln s , i.e. the relation


σdiff (s)/σel(s)→ 0 (22)


will take place at s→∞.
It would be also interesting to speculate further and assume the saturation of


the bound Eq. (21). It would mean that an asymptotic equipartition of the inelastic
cross-section on diffractive and non-diffractive ones occurs.


Conclusion
Thus, one can say that, at least, there is no inconsistency between saturation of
the unitarity limit leading to Eq. (3) and the bound on the inelastic diffractive
cross–section in the case of reflective scattering, i.e. the reflective scattering limit
and the ratio


σdiff (s)/σinel(s)→ const.


at s→∞ can easily be reconciled. The energy-independent ratio σdiff (s)/σinel(s)
is also consistent with the commonly accepted definition of the inelastic diffrac-
tion as a result of the Pomeron exchanges and account for the recent experimental
trends found at the LHC.


Note, if one assumes mechanism resulting in saturation of the black disk limit
at the asymptotic energies, this is not the case. The black disk limit saturation is
usually motivated by the eikonal models. Those models reduce the range of the
possible variation of a partial amplitude by factor of 1/2. This reduction is not in
a direct inconsistency with the LHC data yet. However, the most recent analysis
provides the strong indications on possibility of crossing the values associated
with the black disk limit by the elastic amplitude [6]. Thus, it seems now difficult
to conform the behavior of the inelastic diffraction at the LHC energy range to the
assumption on the black disk limit saturation at s→∞.


The new LHC experiments at higher energies would be definitely helpful for
resolving the asymptotical dynamics of the inelastic diffraction and elastic scat-
tering.
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