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Abstract

The spontaneous breaking of the general gauge invariance is proposed as a source of
the gravity dark matter and dark energy in the framework of the extended gravity,
with the dynamical fields of metric and a scalar quartet. In the weak-field limit,
the Higgs mechanism for gravity is explicitly demonstrated in a generally covariant
form. In the linearized approximation, under the natural (in the t’Hooft’s sens)
restrictions, the theory describes the massless tensor and massive scalar gravitons,
being unitary and free of ghosts.

1



1 Introduction

The unification of the superficially unrelated phenomena in nature seems to be the main
trend in the contemporary fundamental physics. Among such the formally unrelated
phenomena there are the so-called dark matter (DM) and dark energy (DE). Neverthe-
less, being extremely elusive, DM and DE may naturally have its common origin in a
modification/extension of gravity.

Presently, a firm basis for a theory of gravity is General Relativity (GR). The lat-
ter is well-known to be the generally covariant (GC) metric theory of gravity describing
in vacuum one physical gravity mode – the massless two-component transverse-tensor
graviton. This property is ensured by the conventionally adopted exact general gauge
invariance/relativity of GR. At that, a scalar gravity mode, contained a priori in metric,
gets unphysical as a by-product. However, to insure the generic property of the massless-
ness of tensor graviton it would suffice for a gravity theory to possess just the transverse
gauge invariance/relativity [1]. Given this, there could appear in metric one more physi-
cal mode – the scalar graviton. As an extension to GR, the gravity theory based on the
transverse relativity in the explicitly non-generally covariant form, with an extra scalar
mode contained in metric, was proposed in [2, 3] and further elaborated in [4]. In the
generally covariant form, such a theory was proposed in [5] and developed in [6]. At that,
the GR violation was proposed as a raison d’être for appearance of the gravitational DM.
To such interpretation, GC preservation proves to be crucial. The gravity DM possesses
the generic properties conventionally assigned to DM. In particular, there was obtained
a halo-type solution immanent to the theory. In a sense, such a solution may serve as a
signature for the extended GR as the black-hole solution is the signature for GR itself.
Inevitably, for the explicit GR violation, under GC preservation, one should introduce
a nondynamical scalar density. This is the simplest theory realizing the scenario of the
explicit GR violation with the gravity DM.

A more detailed study of DM may though require an extension of the scenario beyond
the minimal one. This would imply, in turn, an extension of the GR violation. Irrespective
of DM, the general second-order effective Lagrangian with the explicit GR violation in
the non-covariant form was proposed in [7]. In the GC form, such a Lagrangian for the
gravity DM was elaborated in [8] in the context of a nonlinear model. There, as before,
to maintain GC under explicit GR violation, it is necessary to introduce a set of the
nondynamical quantities, minimally, a quartet of the scalar fields. Such a proliferation
of the uncontrollable nondynamical quantities in a half-dynamical theory makes one
uneasy, both theoretically and phenomenologically. It would thus be desirable to make
the theory completely dynamical by making the nondynamical quantities, minimally the
scalar quartet, dynamical, as well. The dynamical scalar quartet in the context of the
dynamical four-volume element in gravity was introduced in [9]. It was used for an
implementation of the Higgs mechanism for gravity in [10]–[14].

The present paper is an extension and development of two preceding papers of the
author [6, 8]. Now, the explicit GR violation with the nondynamical background fields
as an origin of the gravity DM is substituted by the spontaneous GR braking with a
dynamical scalar quartet. Simultaneously, this proves to serve as an origin of the gravity
DE. In Section 2, the general framework for the unified description of the gravity, DM
and DE by means of the spontaneous breaking of the general gauge invariance/relativity
is worked out. The coupled classical equations for metric and the scalar quartet are
presented. An implementation of the Higgs mechanism for gravity in the WF limit is
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then demonstrated in an explicitly generally covariant form. A consistency condition on
a background, for the spontaneous symmetry breaking (SSB) in the given background
to take place, is exposed. Finally, the linearized theory in a reduced form is shown to
describes the massless tensor and massive scalar gravitons, being unitary and free of
ghosts. The prospects for such a unified metric-quartet theory of the extended gravity,
DM and DE are shortly discussed in Conclusion.
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2 Dark unification

2.1 Metric-quartet gravity

An underlying theory of the gravity and space-time, whichever it might be, should in-
evitably manifest itself on an observable level as an emergent/effective field theory to
match with the conventional field theory for the ordinary matter. In searching for such a
fundamental theory, one should, conceivably, look first for the respective effective theory.
The latter is to be characterized generically by a set of fields and symmetries ruling the
interactions of the fields. Assume thus that the effective field theory of the extended
gravity superseding GR is described by the dynamical fields of metric gµν and a scalar
quartet Xa, a = 0, . . . , 3, with an action

S =
∫
LG(gµν, X

a)
√
−g d4x, (1)

where g = det(gµν) and LG is an effective Lagrangian. The latter is assumed to be
generally covariant and invariant under a global Lorentz symmetry SO(1, 3) acting on
the indices a, b, etc. The physical meaning of the extra variables Xa will be clarified later
on. The most general LG may generically be partited into three pieces depending on the
appearance of the derivatives:1,2

LG = Lg(∂λgµν) + K(∂λgµν, ∂λX
a)− V (∂λX

a), (2)

where Lg is a Lagrangian of the pure metric gravity, with K and V meaning, respectively,
the “hard” (kinetic) and “soft” (potential) admixtures of the scalar quartet to metric
gravity. Collectively, these admixtures are attributed to the gravity DM and DE, with
the latter ones considered as the two facets of a common gravity dark substance (DS).3

The phenomenon of the unification of the pure metric gravity and DS in the framework
of the metric-quartet extended gravity may be referred to as the dark unification.

1At that, an additional dependence directly on gµν is tacitly allowed, too.
2One more a priori conceivable term without any derivatives, VΛ, is omitted here due to the assumed

shift symmetry Xa → Xa + Ca, with an arbitrary constant Ca.
3In the present approach, the division of DS onto DM and DE is rather conventional, depending

mainly on their spacial clusterization ability to comply with observations.
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2.2 Pure metric gravity

Similarly to GR, one may take for the proper gravity the minimal generally covariant
Lagrangian of the second order in derivatives of metric:4

Lg = −
κ2
g

2
R. (3)

Here R is the Ricci scalar curvature, κg = 1/(8πGN)1/2 the Planck mass and GN the
Newton’s constant. In what follows, we put κg = 1. The gravity per see is taken to
preserve the general gauge invariance/relativity. The GR breaking is attributed entirely
to the gravity DS.

4A modified generally covariant Lg dependent only on metric, e.g., f(R), is a priori conceivable, too.
Though, acting as an origin of the gravity DE, such modifications could hardly produce the gravity DM.
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2.3 Hard breaking

To preserve GC, the kinetic effective Lagrangian K should dependent on a difference of
the Christoffel connection Γλµν for the metric gµν and an auxiliary affine connection γλµν
(taken to be symmetric):

Bλ
µν = Γλµν − γλµν. (4)

Being given by the difference between the similarly transforming quantities, the field Bλ
µν

is a tensor and, as such, may serve to construct the scalar Lagrangian. In these terms,
one can decompose K as

K =
1

2

5∑
i=1
εiOi, (5)

through a complete set of the independent two-derivative bilinear in B operators:5

O1 = gµνBκ
µκB

λ
νλ, O2 = gµνg

κλgρσBµ
κλB

ν
ρσ,

O3 = gµνBκ
µνB

λ
κλ, O4 = gµνg

κλgρσBµ
κρB

ν
λσ,

O5 = gµνBλ
µκB

κ
νλ, (6)

with some free parameters εi, i = 1, . . . , 5, presumably small, |εi| � 1.6 eh auxiliary
connection may be taken as follows [8]:

γλµν =
∂2Xa

∂xµ∂xν
∂xλ

∂Xa

∣∣∣∣
Xa=Xa(x)

= Xλ
a∂µX

a
ν , (7)

with X ≡ det(∂Xa/∂xµ) 6= 0 for the invertibility, xµ = xµ(Xa). Assign to the extra
variables Xa the dimension of length. The coordinates xα ≡ δαaX

a, wherein γγαβ(xα) ≡ 0,
define the distinguished observer’s coordinates coinciding with the affine coordinates
for the (piece-wise) flat affine background.7 Relative to the arbitrary xµ, Xa are the
dynamical quantities. At that, Xα

µ = ∂xα/∂xµ and Xµ
α = ∂xµ/∂xα are the frames relating

the distinguished xα and arbitrary xµ coordinates. Geometrically, one may present γλµν
as a Christoffel connection, γλµν = Γλµν(γµν), for an auxiliary metric

γµν = Xa
µX

b
νηab, (8)

with γ = det(γµν) = −X2 and the inverse metric γµν . By this token, Xa
µ = γµλη

abXλ
b and

γµν = γµκγµλγ
κλ.8,9 In these terms, as a minimal kinetic contribution to the spontaneous

5This is a fully dynamical generalization, with a dynamical γλµν and the spontaneous GR breaking,

of a half-dynamical description, with a nondynamical γ̂λµν and the explicit GR violation [8].
6Two more second-derivative linear in Bλµν terms, gµν∇λBλµν and gµν∇µBλνλ, with ∇λ a covariant

derivative, are omitted due to the imposed invariance under the reflection B → −B.
7Henceforth the physical meaning of Xa. Namely, one may assume that the vacuum is a kind of

a physical medium modelled by the affine space endowed with the absolute coordinate Xa undergoing
the inhomogeneous Lorentz transformations. At that, GR deals only with the relative coordinates xµ

undergoing the arbitrary (smooth) transformations among themselves. The transition between the two
kinds of coordinates may though be singular.

8The usage of γµν is not obligatory but useful as explicating the geometrical meaning of the gravity.
9A priory, one could use |X| =

√
−γ as a dynamical measure (four-volume density). We have retained

to this end
√
−g to maintain explicit baring to GR.
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GR breaking, one can restrict himself by the operator

O1 = gµν∂µ ln

√
−g√
−γ

∂ν ln

√
−g√
−γ

. (9)

where
√
−γ = |X|.This minimal case presents a fully dynamical generalization of the

semi-dynamical theory for the scalar-graviton DM due to the explicit GR violation, with
a nondynamical γ̂ [5, 6]. In what follows, we will refer to the scalar graviton as the
systolon [6] referring to the tensor one conventionally just as graviton.10

10Choosing, in the spirit of the unimodular relativity, as an integration measure
√
−γ instead of

√
−g

one could consider a dynamical unimodular theory of gravity, with metric gµν restricted by the condition
g = γ. In this case, though, the kinetic term O1 for the scalar graviton/systolon would be lost.
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2.4 Soft breaking

To account for the gravity SSB take as the scalar variables [13, 14]:

Hab = gµνXa
µX

b
ν, (10)

as well as [5, 6]:

σ = −1

2
ln | det(Hab)| = ln

√
−g/|X| = ln

√
−g/
√
−γ. (11)

Choose then the potential term generically as follows:

V =
1

8
m2
tH

abHab +
1

2
m2
xæ(H2) +

1

2
m2
sσ

2 + ∆V (Hab, σ), (12)

with mt, mx and ms some mass parameters, H ≡ Habηab, æ(H2) a scalar function to
be properly chosen, and ∆V a rest of the potential containing the higher degrees of Hab

and σ. The parameters mt and ms, with mx and æ(H2) properly chosen, prove to be the
masses, respectively, of the tensor and scalar gravitons.11,12

Due to GC, the theory being fully dynamical is also gauge invariant under the general
diffeomorphisms (Diff’s), or, the Lie derivatives, defined as

Diff : ∆ξgµν = gλν∂µξ
λ + gµλ∂νξ

λ + ξλ∂λgµν ,

∆ξX
a
µ = Xa

λ∂µξ
λ + ξλ∂λX

a
µ, (13)

corresponding to ∆ξx
µ = −ξµ, with ξλ an arbitrary gauge vector. It follows henceforth

the Lie derivative of
√
−g:

∆ξ

√
−g = ∂µ(ξµ

√
−g), (14)

and similarly for
√
−γ, so that σ transforms as a scalar:

∆ξσ = ξµ∂µσ. (15)

The Lie derivative of a quantity may explicitly be expressed in a tensor form through
replacing ∂µ by a covariant derivative ∇µ. The general Diff reduces the number of the
independent field components in Lagrangian at most to ten (vs. six in GR). To account for
this, a gauge fixing Lagrangian, LF (or the respective gauge fixing condition), appropriate
for a problem at hand, is to be added.

11A particular form of the tensor-graviton mass term may be justified through compliance with the
Fiertz-Pauli Lagrangian in the linearized approximation (LA) (see, later).

12A priori, one could consider the additional terms dependent only on Xa
µ through γµν such as R(γµν).
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2.5 Classical equations

Supplementing the Lagrangian L by a matter one Lm and varying the total action with
respect to δgκλ (δgκλ = −gκµgλνδgµν) and δXa, so that, in particular:

δHab = Xa
κX

b
λδg

κλ + 2gκλXa
κδX

b
λ,

δH = ηabδH
ab,

δγµν = ηab(X
a
µδX

b
ν +Xa

ν δX
b
µ),

δ
√
−γ = (1/2)

√
−γγκλδγκλ

δ
√
−g = −(1/2)

√
−ggκλδgκλ,

δσ = δ
√
−g/
√
−g − δ

√
−γ/
√
−γ, (16)

we get a pair of the coupled field equations (FEs) for the extended gravity in a generic
form as follows:

Gµν ≡ Rµν −
1

2
Rgµν = Tmµν + TKµν + T Vµν ≡ Tmµν + TDµν ,

∂κ
( δK
δγκλ

Xa
λ −

∂V

∂Hab
gκλXb

λ +
1

2

∂V

∂σ
γκλXa

λ

)
= 0, (17)

where δ/δγκλ is a total variational derivative with respect to γκλ. To eliminate the gauge
ambiguity, in the real solving FEs one should first fix the coordinates by imposing an
appropriate gauge condition. This will tacitly be understood. The l.h.s. in the upper line
of (17) is the gravity tensor Gµν due to Lg, with TDµν ≡ TKµν + T Vµν in the r.h.s. treated as
the energy-momentum tensor of DS.13

13This is, in essence, the raison d’être for associating the admixtures with DS.
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The kinetic contribution to TDµν is

TKµν ≡
1

2

5∑
i=1
εiTi µν(gµν, B

λ
µν), (18)

with Tiµν the partial contributions due to Li:

Ti µν =
2√
−g

δ(
√
−gOi)
δgµν

. (19)

with δ/δgµν designating a total variational derivative. A similar expression holds for
the canonical energy-momentum tensor Tmµν of the conventional matter. Likewise, the
potential contribution to TDµν is

T Vµν = −2
∂V

∂Hab
Xa
µX

b
ν + (

∂V

∂σ
+ V )gµν. (20)

Due to the Bianchi identity, ∇µG
µν = 0, the total energy-momentum tensor, Tµν , should

be covariantly conserved:

∇µT
µν ≡ ∇µ(T µνm + T µνD ) = 0. (21)

Assuming Lm to be independent of Xa, one conventionally gets that ∇µT
µν
m = 0. In this

case (or in the matter vacuum), the DS contribution should separately be covariantly
conserved, too.

It may be said that the system (17) determines in a self-consistent dynamical manner
the two world strata: the metric structure and the affine texture. At that, the first equation
determines the metric structure at a given affine texture. This equation is the same as in
the half-dynamical theory. The second equation acts v.v., determining the affine texture
appropriate for a given metric structure. At least, this may be looked for by means of
the consecutive approximations starting from a putative texture (or, v.v.). The account
for the full dynamics should, first, restrict a prior freedom of choosing a nondynamical
background in the framework of the half-dynamical description and, second, introduce to
the latter some corrections to be controlled. E.g., under the minimal GR breaking only
through O1 and V (σ), the second line in FE’s (17) looks like

∂κ((ε1∇λ∇λσ + ∂V/∂σ)Xκ
a ) = 0. (22)

It is satisfied, in particular, at ε1∇λ∇λσ + ∂V/∂σ = 0, which explicitly reproduces the
analogous quasi-harmonic solution in the semi-dynamical approach [6]. This indicates
that the adopted there nondynamical γ̂ for the solution is correct. Other solutions of the
semi-dynamical approach need the similar self-consistency verification and, conceivably,
modification.
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2.6 Weak-field limit

The physics content of a nonlinear field theory, as the quantum one, is governed by the
weak-field (WF) limit. To this end, consider the expansion

gµν = ḡµν + hµν ,

Xa = X̂a + χa,

Xa
µ = X̂a

µ + ∂µχ
a, (23)

where X̂a, X̂a
µ ≡ ∂µX̂

a and ḡµν are some background (vacuum) values; gµν = ḡµν − hµν ,
hµν = ḡµκḡνλhκλ, and |hµν |, |χa| � 1.14 At that, the background coordinates are assumed
to be fixed by a suitable gauge condition. By this token, one has

Hab = X̂a
κX̂

b
λ(ḡκλ − hκλ) + ḡκλ(X̂a

κ∂λχ
b + X̂b

κ∂λχ
a). (24)

It is more convenient to work in the fully space-time notation. To this end, introducing
Hµν ≡ X̂µ

a X̂
ν
bH

ab one first gets:

Hµν = ḡµν −hµν + ḡµλX̂ν
c ∂λχ

c + ḡνλX̂µ
c ∂λχ

c ≡ ḡµν −h′µν, (25)

For h′µν = ḡκµḡλνh
′κλ there fulfills then:15

h′µν = hµν − ḡµλ(∇̂νχ
λ + ḡνλ∇̂µχ

λ), (26)

where χµ ≡ X̂µ
aχ

a and ∇̂µ is a covariant derivative with respect to γ̂λµν , so that ∇̂λγ̂µν = 0.
With account for

σ = −1

2
ln | det(Hµν)/ det(γ̂µν)| (27)

one gets in the WF limit

σ = ln
√
−ḡ/

√
−γ̂ +

1

2
h′, (28)

where ḡ ≡ det(ḡµν), γ̂ ≡ det(γ̂µν) and h′ ≡ ḡκλh′κλ.
Further, accounting in the WF limit for the relations

Γλµν = Γ̄λµν +
1

2
ḡλκ(∇̄µhνκ + ∇̄νhµκ − ∇̄κhµν),

γλµν = γ̂λµν + ∇̂µ∇̂νχ
λ, (29)

where Γ̄λµν and γ̂λµν are the background connections corresponding to the background
metrics ḡµν and γ̂µν , respectively, one can see that16

14Ultimately, X̂a and χa may be associated, respectively, with a mean value and a quantum fluctuation
of some absolute coordinates Xa. It may, conceivably, be said that DM and DE are a manifestation of
such a “trembling” of the absolute coordinates relative to the smoothed observer’s ones.

15To escape ambiguities, the indeces are raised and lowered in the WF limit exclusively by ḡµν and
ḡµν , respectively.

16In other words, Bλµν reduces in the WF limit to a redefined dynamical connection in the nondynamical
background.
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Bλ
µν = Γλµν(h

′
µν)− γ̂λµν. (30)

Hence the kinetic term K is also expressible in the WF limit exclusively in terms of h′µν .
Now, make in Lg the field substitution hµν → h′µν . Due to GR, Lg is left invariant,
Lg(h

′
µν) ≡ Lg(hµν), if there exists a fictitious change of coordinates ∆ζx

µ = −ζµ, with

∆ζhµν = ∇̄µζν + ∇̄νζµ, (31)

(ζµ = ḡµλζ
λ), so that there fulfills17

∇̄µζν + ∇̄νζµ = −(ḡµλ∇̂νχ
λ + ḡνλ∇̂µχ

λ). (32)

The integrability condition for (32) is

(∇̄ν∇̄ν)ζµ + ∇̄µ(∇̄νζν) = −(ḡµλ∇̄ν∇̂νχ
λ + ∇̄λ∇̂µχ

λ). (33)

Eq. (32) is the consistency equation for the gravity SSB in the WF limit: if in the given
backgrounds with ḡµν and γ̂µν there exists for each χµ a respective ζµ, then SSB may
take place. At the very least, this is possible in the flat metric and affine backgrounds
(see, later). In this case, a gauge fixing Lagrangian should be added depending on a
residual gauge invariance. In an opposite case, the WF limit depends explicitly on χµ,
too. Anyhow, reducing the two kinds of the dynamical variables, hµν and χµ, to just
one its combination h′µν is exclusively a WF (or, low-energy) phenomenon which dilutes
in the higher orders, with the two variables contributing, in general, independently. By
construction, general gauge invariance should perturbatively recover in the strong fields
(or, at the high energies).

Altogether, under the choice of h′µν in the WF limit as a new dynamical variable,
it totally absorbs χµ to produce ultimately four additional gravity degrees of freedom
(d.o.f.’s). This is an implementation of the Higgs mechanism for gravity. Most generally
thus, the WF theory describes ten d.o.f.’s, including, possibly, ghosts. Further reduction
of the number of d.o.f.’s and its status (ghost or physical) depend on a residual gauge
invariance/relativity in the WF limit. While a general case with the arbitrary parameters
εi and the arbitrary (classically compatible) backgrounds ḡµν and γ̂µν requires special in-
vestigation, we present below a simplest, but still physically meaningful, case illustrating
the reasonability of the theory.

17The same is true for a matter Lagrangian Lm, in the case if it is as in GR.
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2.7 Linearized approximation

Consider the minimal GR breaking case when the metric and affine backgrounds are
flat and, moreover, its respective Minkowskian coordinates coincide with each other.
In other words, let xα − δαa X̂

a be the distinguished observer’s coordinates where there
simultaneously fulfills

X̂a
α = ∂αX̂

a = δaα, ḡαβ = γ̂αβ = ηαβ, (34)

with ηαβ = diag(1,−1,−1,−1)αβ the Minkowski symbol. The indices are manipulated
by means of ηαβ and ηαβ. This gives

h′αβ = hαβ − (∂αχβ + ∂βχα), h′ = h− 2∂γχ
γ. (35)

In such a flat background the consistency equation (32) fulfills with ζα = −χα. Hence, all
χa can be absorbed in LA by the metric field. With all the connections being trivial, the
WF limit becomes, in fact, the linearized approximation (LA). Expanding the Lagrangian
we get in LA in an obvious notation18

LG = (1 + εt)Lg + ∆Lvs +
1

8
m2
t ((h

′
αβ)2 − h′2) +

1

8
m2
sh
′2, (36)

where

Lg =
1

8
(Ot − 2Ov + 2Ox −Os),

∆Lvs =
1

8
(εvOv + εxOx + εsOs), (37)

in terms of a complete (up to the total derivatives) set of the partial operators

Ot = (∂γh
′
αβ)2, Os = (∂αh

′)2,

Ov = (∂βh′αβ)2, Ox = ∂αh′αβ∂
βh′, (38)

18Here and in what follows, we intently preserve the prime to stress that the fields at hand are the
redefined ones containing the absorbed Goldstone bosons.
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and the respective partial constants as follows:

εt = 3ε4 − ε5,
εv = 4(ε2 + ε4),

εx = −2ε2 + ε3 − 3ε4 + ε5,

εs = ε1 + ε2 − ε3 + 3ε4 − ε5. (39)

At that, we have used a proper mxæ(h) in (12) to obtain in (36) the conventional Fiertz-
Pauli mass term for the scalar graviton. Under the general Diff’s:

∆ξh
′
αβ = ∂αξβ + ∂βξα, ∆ξh

′ = 2∂αξ
α (40)

one gets (up to the total derivatives)

∆ξOt = −2(∂αξβ + ∂βξα)∂2h′αβ,

∆ξOv = −(∂αξβ + ∂βξα)∂2h′αβ − ∂γξγ∂α∂βh′αβ,
∆ξOx = −∂γξγ(∂2h′ + ∂α∂βh

′αβ),

∆ξOs = −2∂γξ
γ∂2h′.

∆ξ(h
′
αβ)2 = 2(∂αξβ + ∂βξα)h′αβ,

∆ξh
′2 = 2∂γξ

γh′. (41)

It follows henceforth that Lg is always Diff-invariant, ∆ξLg = 0, whereas ∆Ovs is, gen-
erally, Diff-variant. To be as close to GR as possible, we require the Diff invariance in
LA to be violated in a minimal fashion. This may be achieved by imposing a residual
transverse diffeomorphism (TDiff) invariance.
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2.8 Transverse-diffeomorphism invariance

With the scalar-graviton/systolon DM in mind impose on LG the constraints

εv = 4(ε2 + ε4) = 0, mt = 0. (42)

The Lagrangian in LA now becomes

LG = (1 + εt)Lg + ∆Ls +
1

8
m2
sh
′2, (43)

∆Ls =
1

8
(ε̃xOx + ε̃sOs), (44)

with the reduced partial constants as follows:

ε̃x = ε3 − 2ε4 + ε5,

ε̃s = ε1 − ε3 + 2ε4 − ε5 (45)

and the same εt. It follows from (41) that the symmetry of LG increases under such the
constraints from no Diff up to the three-parameter transverse diffeomorphisms (TDiff’s):
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TDiff : ∂γξ
γ = 0, (46)

These two constraints define the most general gravity DM theory possessing in LA no
explicit problems.19 For removing the gauge ambiguities, one should thus impose a gauge
condition, e.g.,

∂α∂
γh′βγ − ∂β∂γh′αγ = 0. (47)

Decomposing h′αβ as

h′αβ = h̃′αβ +
1

4
ηαβh

′, (48)

where ηαβh̃′αβ = 0, one sees that h′ is unrestricted by the condition. At the quantum
level, one should add a proper gauge fixing Lagrangian, e.g., [2, 3]:

LF = λ(∂α∂
γh′βγ − ∂β∂γh′αγ)2, (49)

with λ a dimensionless gauge parameter. The term LF effectively eliminates three field
components out of LG, leaving, generally, seven independent ones. At λ→∞, LF ensures
the classical restriction (47). For simplicity, let moreover ε̃x = 0, so that ε̃s = ε1.

20 In
this case, one gets

LG = (1 + εt)Lg +
1

8
κ2
s(∂αh

′)2 +
1

8
m2
sh
′2, (50)

where we have put κ2s ≡ ε1 ≥ 0.21 Such a particular case may be shown to present a
consistent quantum field theory, unitary and free of ghosts [2, 3]. It describes a massless
two-component transverse-tensor graviton and its massive scalar counterpart. With ac-
count for the higher-order corrections the TDiff invariance of LA is superseded in the full
nonlinear theory by the general Diff invariance, conceivably, not spoiling the properties of
the theory. This reduced case, with the three independent parameters ε1, ε4 and ε5 (with
the restrictions ε1 > 0, ε2 = ε4 and ε3 = 2ε4 − ε5), and m2

s 6= 0, is, in principle, sufficient
to encompass both the gravity DM and DE. If insufficient, this may be extended to the
more general case with ε̃x 6= 0..

19The case εv 6= 0 would lead to classical instabilities, while the simultaneous fulfillment of mt 6= 0
and ms 6= 0 would result in the appearance of ghosts [4]. Having the scalar-graviton/systolon DM in
mind, we choose εv = mt = 0, with the appearance of TDiff. V.v., TDiff ensures these two constraints
to be “natural” in the sense of increasing the symmetry.

20However, not increasing the symmetry, such a restriction is not “natural” in the t’Hooft’s sense. A
more general TDiff case is treated in a higher-derivative gauge in [4].

21The limit κs = 0 would correspond to the non-propagating auxiliary scalar-gravity mode.
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3 Conclusion

The unified dynamical description of the gravity, DM and DE, through the spontaneous
breaking of the general gauge invariance/relativity may be brought to a consistent theory
of dark unification, with the gravity DM and DE as the two kinds of a common dark
substance. Being fully dynamical, the theory with the spontaneous GR breaking, in
distinction with the explicit GR violation, eliminates the ambiguities related with the
nondynamical quantities. In the strong fields, the general gauge invariance/relativity
restores not spoiling the high-energy behaviour of the theory. Containing, in addition to
metric, the dynamical fields of the absolute coordinates, the theory drastically changes
the vision of the world as built of the two influencing each other strata: the metric
structure and affine texture. The proposed metric-quartet theory of the dark unification
by no means is, and is not intended to be, an ultimate theory of gravity. Being, as GR,
just an effective field theory beyond GR, such an intermediate theory may, conceivably,
pave the way from GR towards an ultimate/(more) fundamental theory of gravity and
space-time. There remain, of course, many open problems but, with the clearly stated
foundations of the theory, they are, in principle, liable to solving. Further theoretical
studying of the theory and its phenomenological confirmation/limitation would thus be
urgent.
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