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Formation length for Bethe-Heitler process

e

γ
e

Lf ∼ 1/qz ∼
2E(1−x)

m2
ex

In 1953 Ter-Mikaelian noted that the photon formation length becomes very large at

E →∞.
For classical electron trajectories in the matrix element e→ e+ γ

M ∝
∫

dt exp[i(ωt− ~k~r(t)]~ǫ~ve(t)

the coherence length is simply the time scale dominating the t-integral Lf ∼ 2E2

e

m2
eω

.

It agrees with quantum estimate Lf ∼ 1/qz from the uncertainty relation ∆p∆z ∼> 1

which gives Lf ∼ 2Ee(1−x)
m2

ex
2

with x = ω/Ee.

– p.3



The photon formation length in medium

Lf can be viewed as a longitudinal scale at which the radiated photon and electron

become separated by a distance ∆z ∼> λγ

∆z ∼ (1− ve)Lf ∼ λγ

In a medium due to multiple scattering ve ⇒ veffe = ve〈〈cosθ〉〉 < ve

∆zmed ∼ (1− veffe )Leff
f ∼ λγ

The radiation is suppressed (the LPM effect) when Leff
f ∼< Lf .
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The history of the LPM effect

In 1953 Landau and Pomeranchuk within classical approach obtained for the photon

spectrum in the regime Leff
f ≪ Lf

dP

dω
∝ 1√

ω

A quantum theory, valid beyond the soft photon approximation, was developed by Migdal

in 1956. The old-fashioned PT was used. Migdal’s method is based on the evaluation of

the electron density matrix in the Fokker-Planck approximation

The LPM effect for e→ γe was qualitatively confirmed in experiment in Protvino at

Ee = 40 GeV [A.A.Varfolomeev et al. JETP 42, 218 (1975)].

The first accurate measurement (for ω ≪ Ee) was performed at SLAC [P.L. Anthony et al.

Phys. Rev. Lett. 75, 1949 (1995)]. For ω ∼ Ee the effect was studied in 2003 at CERN

SPS [ [H.D. Hansen et al. Phys. Rev. Lett. 91, 014801 (2003)]
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a → bc induced splitting and LCWF

In general for a→ bc Lf ∼ 2Exbxc/ǫ
2, where ǫ2 = m2

bxc +m2
cxb −m2

axbxc.

At Lf ≫ a (a is the screening radius, in QED a ∼ rB/Z1/3) the transverse coordinates

are frozen at the longitudinal scale ∼ a. It allows to write the cross section for a→ bc in

QED and QCD in terms of LCWF which is formed at the scale ∼ Lf [Nikolaev, Piller,

BGZ (1995)]

|aphys〉 = |a〉
√
1− n+Ψbc

a (~ρ, x)|bc〉 ⇒ Ŝ|aphys〉 = Sa{|a〉
√
1− n+SbcāΨ

bc
a (~ρ, x)|bc〉}

n =
∫

d~ρdx|Ψbc
a (~ρ, x)|2, Sbcā = SbScS∗

a ,

P (a→ a) = |〈aphys|Ŝ|aphys〉|2,

P (a→ bc) = 1− P (a→ a)

⇒
dσBH

a→bc(x)

dx
=

∫

d~ρ |Ψbc∗
a (~ρ, x)|2σābc(ρ, x)

|Ψbc∗
a (~ρ, x)|2 ∝ ǫ2K2

1 (ρǫ) and σābc(ρ, x) ∝ ρ2 log (a/ρ)

⇒ dσ/dx ∝ Pba(x)/ǫ
2

for spin non-flip part of σ(e→ γe)⇒
(

dσ

dx

)BH

nf

≈ 4α3Z2[4− 4x+ 2x2]

3m2
ex

log (2ame)
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Basics concepts of the LCPI approach

a

b

cGµ

We consider processes like a→ bc in an external vector field (in QCD or QED). The

S-matrix element is written in standard form in terms of incoming and outgoing WFs. For

q → gq′ it reads
〈gq′|Ŝ|q〉 = −ig

∫

dyψ̄q′ (y)γ
µA∗

µ(y)ψq(y) .

The quark wave function is written in the form

ψi(y) = exp[−iEi(t− z)]ûλφi(z, ~ρ)/
√

2Ei,

λ is quark helicity, ûλ is the Dirac spinor operator. The gluon wave function is written in

a similar way. The z-dependence of the transverse wave functions φi is governed by the

two-dimensional Schrödinger equation

i
∂φi(z, ~ρ)

∂z
=
{ (~p− g ~G)2 +m2

q

2µi
+ g(G0 −G3)

}

φi(z, ~ρ) ,

G is the external vector potential (the color indexes are omitted), µi = Ei.
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The transverse part ~G can be ignored for gauges with potential vanishing at large

distances. Thus we have a Schrödinger equation with “time”-dependent potential

U = g(G0 −G3).

The z-evolution of φi can be written in terms of the Green’s function as

φi(z2, ~ρ2) =

∫

d~ρ1Ki(~ρ2, z2|~ρ1, z1)φi(z1, ~ρ1)

⇒ One can write the cross section in terms of the initial (z = zi) and final (z = zf )

transverse density matrices and the Green’s functions K and K∗.

The Green’s functions are written in the path integral form

Ki(~ρ2, z2|~ρ1, z1) =
∫

D~ρ exp

{

i

∫

dz

[

µi(d~ρ/dz)
2

2
− U(~ρ, z)

]

− im2
i (z2 − z1)
2µi

}

In calculation of the gluon spectrum ∝ 〈〈|〈q′g|M |q〉|2〉〉 the averaging over the medium

states 〈〈 〉〉 is performed before the path integration. In vacuum

Kvac
i (~ρ2, z2|~ρ1, z1) =

µi

2πi(z2 − z1)
exp

[

iµi(~ρ2 − ~ρ1)2
2(z2 − z1)

− im2
i (z2 − z1)
2µi

]
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z2
z1

b

b̄

c

c̄

ā

a

zi

zf

a/Lf suppressed

→ lines (K) interact with the medium as “particle” and← (K∗) as “antiparticle”. 〈〈〉〉
generates an interaction between trajectories. This interaction is local in z at Lf ≫ the

correlation radius in the medium. The effective Lagrangian for the path integral reads

Leff = Lp
0(~̇τp)−L

p̄
0(~̇τp̄)+Lint(~τp, ~τp̄), Lp

0(~̇τp) =
∑

i

µi ~̇ρ
2
i

2
, Lint(~τp, ~τp̄) =

in(z)σX(~τp, ~τp̄)

2

~τp, ~τp̄ are the sets of the transverse coordinates for “particles” and “antiparticles”, σX is

the diffractive operator for X = “particles”+”antiparticles” system scattering off a particle

in medium, n(z) is the number density of the medium. Lint(~τp, ~τp̄) = Lint(~τp − ~τp̄)
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In QED σX is a scalar, but in QCD for the 4-body part (z2 < z < zf ) σX is an operator in

color space. The spectrum integrated over ~qc does not contain the 4-body part at all.

zi z1 z2 Saā(1|i) Sbcā(2|1) Sbb̄(f |2)zf

a

cā

b

b̄

For this transformation we have used the relation (valid in vacuum and medium)

~τ

~τ
′

d~ρ
∫

~ρ
= δ(~τ − ~τ

′
)

The spectrum reads [BGZ (1999)]

dP

dxd~qb
= 2Re

∫ z1

zi

dz1

∫ zf

z1

dz2ĝ〈ρf |Ŝbb̄ ⊗ Ŝbcā ⊗ Ŝaā|ρi〉,

ĝ is the vertex factor, Ŝaā, Ŝbb̄, Ŝbcc̄ are the evolution operators for the corresponding

Leff . The two-body parts can be evaluated analytically [BGZ (1987)]

〈~ρ′a, ~ρ′ā, z′|Ŝaā|~ρa, ~ρā, z〉 = Ka(~ρ
′
a, z

′|~ρa, z)K∗
ā(~ρ

′
ā, z

′|~ρā, z)Φaā(~ρ
′
a − ~ρ′ā, z′|~ρa − ~ρā, z)
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The interaction phase factor Φaā=exp [− 1
2

∫ z′

z dzn(z)σaā(~ρa(z)− ~ρā(z))] should be

evaluated for the straight trajectories of a and ā.

For the bcā-part
∫

D~ρbD~ρcD~ρā =
∫

D~ρD~ρaD~ρā, where ~ρ = ~ρb − ~ρc, ~ρa = xb~ρb + xc~ρc

is the center-of-mass coordinate of the bc system. The
∫

D~ρaD~ρā can be taken

analytically. In the new variables Sbcā reads

〈~ρ′a, ~ρ′ā, ~ρ′, z′|Ŝ|~ρa, ~ρā, ~ρ, z〉 = Ka(~ρ
′
a, z

′|~ρa, z)K∗
ā(~ρ

′
ā, z

′|~ρā, z)K(~ρ′, z′|~ρ, z)

K is the Green’s function for the Hamiltonian

Ĥ = − 1

2µ(x)

(

∂

∂~ρ

)2

+ v(z, ~ρ) +
1

Lf
, v(z, ~ρ) = −in(z)σbcā(~ρ, ~ρa − ~ρā)/2

In this Hamiltonian the trajectories ~ρa, ~ρā are straight, µ(x) = Eax(1− x),

Lf = 2µ(x)/ǫ2 is the formation length

ǫ2 = [m2
bxc +m2

cxb −m2
axbxc].

The potential is not central. The integrals over the center of mass of the end points can

be taken analytically. It makes the trajectories a and ā, b and b̄ parallel
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a

ā

b
b

c
x~τ

~τ

b̄

dP

dxd~qb
=

2

(2π)2
Re

∫

d~τexp(−i~qb · ~τ)
∫ zf

zi

dz1

∫ zf

z1

dz2ĝΦf (~τ, z2)K(~τ, z2|0, z1)Φi(x~τ, z1),

Φi(~τ, z1)=exp
[

− σaā(~τ)

2

∫ z1

zi

dzn(z)
]

, Φf (~τ, z2)=exp
[

− σbb̄(~τ)

2

∫ zf

z2

dzn(z)
]

.

For x-spectrum the potential v is central (since ā is at the center of mass of bc. The

spectrum reads [BGZ (1996)]

dP

dx
=2Re

∫ zf

zi

dz1

∫ zf

z1

dz2ĝ [K(~ρ2, z2|~ρ1, z1) − Kv(~ρ2, z2|~ρ1, z1)]
∣

∣

∣

~ρ1=~ρ2=0
.

Here ĝ =
αsPba(x)

2µ2(x)
∂

∂~ρ2
· ∂
∂~ρ1

. For q → gq we have configuration
q q̄ g

ρ(1−x)ρx

⇒

qq̄g ≈ |88〉 at x→ 0, qq̄g ≈ |3̄3〉 at x→ 1.
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In QED and QCD the three-body cross section can be written in terms of the dipole

cross sections σ2 = σeē and σ2 = σqq̄. σγeē(ρ) = σeē(xρ) and

σgqq̄(ρ, x, z) =
9

8
[σ2(ρ, z) + σ2((1− x)ρ, z)]−

1

8
σ2(xρ, z) . [Nikolaev, BGZ (1994)]

For a→ a (ig)(ig)∗ → (ig)2. ⇒ the unitarity P (a→ a) + P (a→ bc) = 1 is satisfied

For the x, ~qb spectrum the contribution from |z1,2| → ∞ can be expressed via the LCWF

of the a→ bc transition in vacuum, Ψbc
a (we use the adiabatically switched off coupling)

z1

z2

ψ
ψ∗ = 0 (in vacuum)

z = 0
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Formulas for x, ~qb spectrum

dP

dxd~qb
=

2

(2π)2
Re

∫

d~τ exp(−i~qb~τ)
∫ zf

zi

dz1

∫ zf

z1

dz2ĝ
{

Φf (~τ, z2)[K(~τ, z2|0, z1)

−Kv(~τ, z2|0, z1)]Φi(x~τ, z1) + [Φf (~τ, z2)− 1]Kv(~τ, z2|0, z1)[Φi(x~τ , z1)− 1]
}

+
1

(2π)2

∫

d~τd~τ ′ exp(−i~qb~τ)Ψbc∗
a (x, ~τ ′ − ~τ)Ψbc

a (x, ~τ ′)
[

Φf (~τ, zi) + Φi(x~τ , zf )− 2
]

,

Here z1,2 integrations comes only in the matter. For Lf ≫ L we have the picture

scattering at Lf ≫ L

z2

z1

dP

dxd~qb
=

1

(2π)2
Re

∫

d~τd~τ ′ exp(−i~qb~τ)Ψbc∗
a (x, ~τ ′ − ~τ)Ψbc

a (x, ~τ ′)
[

2Γbcā(~τ
′, x~τ)−Γbb̄(~τ)−Γaā(x~τ )

]

,

Γh = 1 − exp [−σh

2

∫∞
−∞ dzn(z)]. For q → gq at x ≪ 1 it gives the Kovchegov-Mueller

spectrum in pA-collisions.
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The x, ~qb spectrum, parton produced in QGP

In the case of a a→ bc for a incoming from −∞ the radiation rate vanishes for a zero

external potential. But for a fast parton produced in a hard reaction a→ bc splitting is

possible even without external potential. It is the well known LO DGLAP parton

showering. In this case the spectrum can be written as (now zi is the production point)

dP

dxd~qb
=

2

(2π)2
Re

∫

d~τ exp(−i~qb~τ)
∫ zf

zi

dz1

∫ zf

z1

dz2ĝ
{

Φf (~τ, z2)[K(~τ, z2|0, z1)

−Kv(~τ, z2|0, z1)]Φi(x~τ , z1) + [Φf (~τ, z2)− 1]Kv(~τ, z2|0, z1)Φi(x~τ, z1)

+Kv(~τ, z2|0, z1)Φi(x~τ, z1)
}

The KvΦi which is 0×∞ can be written via the LC wave function, then

dP

dxd~qb
=

2

(2π)2
Re

∫

d~τ exp(−i~qb~τ)
∫ zf

zi

dz1

∫ zf

z1

dz2ĝ
{

Φf (~τ, z2)[K(~τ, z2|0, z1)

−Kv(~τ, z2|0, z1)]Φi(x~τ, z1) + [Φf (~τ, z2)− 1]Kv(~τ, z2|0, z1)Φi(x~τ , z1)
}

+
1

(2π)2

∫

d~τd~τ ′ exp(−i~qb~τ)Ψbc∗
a (x, ~τ ′ − ~τ)Ψbc

a (x, ~τ ′)Φi(x~τ, zf ) ,

It describes DGLAP (red) and induced (blue) splitting with pT broadening
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Other representations for the x-spectrum

= nσ3(ρ, x)/2,

z1 z2

BH

LPM effect

σ3 =

= LCWF

The LPM effects is equivalent to absorptive correction for scattering of bcā system. This

form has been used for successful description of the SLAC and SPS data on the LPM

effect in photon bremsstrahlung from high energy electrons [BGZ (1996,1998,2003)].

dP/dx can also be written in terms of the bcā medium and finite-size modified LCWF

This form is convenient for parton produced in a medium. – p.17



Dynamical effects in HTL method

The LCPI method applies also to the dynamical pQCD weakly coupled QGP.

nσqq̄(ρ)

2
⇒ P (~ρ) ,

P (~ρ) = g2CF

∞
∫

−∞

dz[G(z, 0⊥z)−G(z, ~ρ, z)] , G(x− y) = uµuν〈〈Aµ(x)Aν(y)〉〉 [QED BGZ (1987)]

P (~ρ) =

∫

d~q

(2π)2
[1− exp(i~ρ~q)]P (~q) .

P (~q) can be written in terms of the HTL polarization operator Πµν.

P (~q) ≈ g2CF TC(~q) , C(~q) =
m2

D

~q2(~q2 +m2
D)

[Aurenche, Gelis, Zaraket (2000)]

In LCPI approach we reproduce all AMY [Arnold, Moore, Yaffe (2001,2002)] results on

photon emission [Aurenche, BGZ (2007)]. the pole 1/q2 (due to zero magnetic mass)

changes the effective dipole cross section at ρ ∼> 1/mD , at small ρ it is the same as in

static model.
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x-spectrum in OA for L=∞

In QED and QCD σ2(ρ) = C2(ρ)ρ2, C2(ρ) is a smooth function. For qq̄

C2(ρ) =
CTCFα

2
s

ρ2

∫

d~q
[1− exp(i~q ~ρ)]

(~q 2 +m2
D)2

, C2(ρ) ≈
CFCTαsπ2

2
log

(

1

ρmD

)

atρ≪ 1/mD

The Hamiltonian takes the oscillator form if one neglects ρ-dependence of C2(ρ) and

replaces it by C2(ρeff ). The oscillator frequency reads

Ω(z) =
(1− i)√

2

(

n(z)C3(x, z)

Eqx(1− x)

)1/2

,

C3(x, z) =
1
8

{

9[1 + (1− x)2]− x2
}

C2 . The OA is used in BDMPS calculations (for

massless partons), C2 = q̂CF /2nCA [Baier, Dokshitzer, Mueller, Peigne, Schiff (1997)].

In BDMPS 〈p2T 〉 = q̂L for gluon. In QED for γeē C3 = x2C2.

The OA corresponds to the Fokker-Planck approximation in Migdal’s approach. In OA

〈p2T 〉 = 2C2nL. The oscillator approximation is clearly not good for q → gq in the BH

regime when ρeff ∼ 1/ǫ. One could expect that the OA should be applicable when

ρeff ≪ 1/ǫ. In reality this is not the case when L ∼< Lf . – p.19



dP

dxdL
= n

dσBH
OA

dx
SLPM (η) ,

dσBH
OA

dx
=

2αsPGq(x)C3(x)

3πǫ2
, PGq =

CF [1 + (1− x)2]
x

η = Lf |Ω| =
2
√

nEx(1− x)C3(x)

ǫ2
, η ≪ 1 BH regime, η ≫ 1 strong LPM effect.

SLPM (η) =
3

η
√
2

∞
∫

0

dy

(

1

y2
− 1

sh2y

)

exp

(

− y

η
√
2

)[

cos

(

y

η
√
2

)

+ sin

(

y

η
√
2

)]

.

For e→ γe CF → 1. At η ≪ 1 SLPM (η) ≃ 1− 16η4/21. For η ≫ 1

SLPM (η) ≈ 3
η
√
2

(

1− π
η2

√
2

)

. The leading term gives

dP

dxdL
≈ αsPGq(x)

π

√

nC3(x)

2Ex(1− x) ∝ x
−3/2 at x≪ 1 [BGZ (1996)].

The factor
(

1− π
η2

√
2

)

gives the heavy-to-light K-factor (strong LPM regime)

K ≈ 1− π

2
√
2

(M2
Q −m2

q)x
3/2

√

2E(1− x)nC3(x)



KDK =

[

1 +
M2

Qx
3/2

√

18EnC2/4

]−2

Dokshitzer, Kharzeev (2001)




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Comparison with SLAC and SPS data on e → γe

Experimentally the total electron energy loss ∆Ee = ω1 + ω2 + . . . is measured.

For SLAC and SPS experiments Leff
f ≪ L. The finite-size effects are important for the

gold target L = 0.7%X0 at Ee = 25 GeV, where the multi-photon effects are negligible.

We evaluated the multi-photon K-factor in the probabilistic approach (dilute loop gas

approximation)

K(x)≈exp



−
1
∫

x

dx1
dPγ

dx1











1− 1

2

x
∫

0

dx1

[

dPγ

dx1
+
dPγ

dx2
− dPγ

dx1

dPγ

dx2

(

dPγ(x)

dx

)−1
]







, x2 = x−x1

Here x≪ 1. For SPS we use K(x) valid at any x. The inaccuracy ∼< 0.5%.
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Comparison with SLAC E-146 data

The spectra in the radiated energy. The dashed line shows the Bethe-Heitler spectrum,

the dotted line our calculations without finite-size effects.
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Comparison with the CERN SPS data

The spectra in the radiated energy on 4.36%X0 Ir target. The dashed line shows the

Bethe-Heitler spectrum. r = 2 tanh (∆/2), ∆ = log (10)/25.
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Parton produced in a brick of QGP

For a fast parton produced in a medium z2 > z1 > zi = 0. Expanding the spectrum over

density for the induced part we have

The spectrum can be written via an effective BH cross section

dP

dx
=

L
∫

0

dz n(z)
dσBH

eff (x, z)

dx
,

dσBH
eff (x, z)

dx
= Re

∫

d~ρψ∗(~ρ, x)σ3(ρ, x, z)ψm(~ρ, x, z) ,

where ψ(~ρ, x) is the LCWF for the q → qg transition in vacuum, and ψm(~ρ, x, z) is the

in-medium finite-size modified LCWF for q → qg transition in medium at the longitudinal

coordinate z. At n→ 0 and z →∞ ψm(~ρ, x, z) = ψ(~ρ, x), and σBH
eff = σBH . At z → 0

dσBH
eff (x,z)

dx

/

dσBH (x)
dx

∝ z . This is a direct consequence of the Schrödinger diffusion

relation ρ2 ∼ z/µ for the transverse size of the qg Fock component of the quark

produced at z = 0. This effect is responsible for the L2-dependence of ∆Eq at

Eq →∞. In QED the situations is the same.
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Qualitative pattern of induced gluon emission

The Schrödinger diffusion relation ρ2 ∼ l/µ relates the typical transverse and

longitudinal scales. In an infinite medium

ρ∞eff ∼ min(ρBH , ρLPM ) l∞eff ∼ (ρ∞eff )
2µ

ρBH = 1/ǫ, lBH = 2Ex(1− x)/ǫ2 (BH regime, weak LPM effect)

ρLPM = [Ex(1− x)nC3]−1/4, lLPM =
√

Ex(1− x)/nC3 (strong LPM effect).

For a finite-size matter two situations are possible.

Infinite medium regime: L ∼> l∞f , and ρeff ∼ ρ∞eff . The spectrum can roughly be

calculated using the effective BH cross section for an infinite medium. There can

exist a region with strong LPM effect (number of rescatterings N ≫ 1) with

dP/dx ∝ x−3/2. But at x→ 0, 1 we always have the BH regime (N = 1

dominates).

Diffusion regime: L ∼< l∞f ρeff ∼ ρd(L) (ρd(L) =
√

L/2µ is the diffusion radius).

The effective BH cross section is chiefly controlled by the finite-size effects. The

N = 1 term dominates, the LPM suppression is small.

– p.25



Failure of OA in diffusion regime

For massless partons the OA for finite medium gives [BDMPS (1997)]

dPBDMPS

dx
=
αsPGq(x)

π
log | cosΩL|

⇒ dPBDMPS

dx
≈ αsPGq(x)

16π

L4C2
3n

2

[x(1− x)E]2
⇒ It is N = 2 rescattering! [BGZ, (2001)]

The mass effects gives nonzero N = 1 term, but for massless partons it vanishes. It is a

consequence of neglecting the Coulomb effects

dσBH
eff (x, z)

dx

∣

∣

∣

∣

∣

N=1

=
αszPGq(x)

8πρ2d(z)
Im

z
∫

0

dξ

ξ2

∞
∫

0

dρ2ρ2C3(ρ) exp

(

iρ2

4ρ2d(ξ)

)

.

For C2(ρ) = const Im
∫

dρ2 = 0 With the Coulomb effects

C2(iρ) = C2(ρ)− const · iπ/2. Only iπ/2 contributes! It gives (no Coulomb

log(1/ρdmD)!).

dσBH
eff (x, z)

dx

∣

∣

∣

∣

∣

N=1

=
α3
sπCTCAρ

2
d(z)PGq(x)[1 + (1− x)2 − x2/9]

8
∝ z .
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Naively one could expect for N = 1 σBH ∝ ρ2dlog(1/ρdmD). But there is no the

Coulomb log in the N = 1 term! For photon emission at Lf ≫ L σBH ∝ 1/x is

replaced dependence σBH ∝ 1/(1− x)

dσBH
eff (x, z)

dx

∣

∣

∣

∣

∣

N=1

=
zαemα2

sπCTCF [1 + (1− x)2]
4E(1− x) ∝ z , [BGZ (2004)]

The N = 1 can also be calculated using the momentum representation [Gyulassy,

Lévai, Vitev (2001); BGZ (2001)]

Each diagram can be calculated as 〈bc|M |a〉 ∝
∫

dzd~ρφ∗b (z, ~ρ)φ
∗
c (z, ~ρ)φa(z, ~ρ) with the

plane wave functions with sharp ~pT change at the rescattering point [BGZ (2004)]
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N = 1 term in momentum representation

dσBH
eff (x, z)

dx
=
α3
sCTPGq(x)

π2CF
[F (1, z) + F (1− x, z)− F (x, z)/9] ,

F (y, z) =

∫

d~pd~k

(~k 2 +m2
D)2

H(y~k, ~p)·
[

1− cos
(

(~p 2 + ǫ2)ρ2d(z)
)]

, ρ2d(z) =
z

2Ex(1− x) ,

H(~k, ~p) =
~p 2

(~p 2 + ǫ2)2
− (~p− ~k)~p

(~p 2 + ǫ2)((~p− ~k)2 + ǫ2)
, 〈H(~k, ~p)〉ǫ=0 =

θ(k − p)
p2

F = F0 + δF , F0 = F (ǫ = 0), δF is mass correction.

The momentum integration gives for ǫ = 0 F0(y, z) = π3y2ρ2d(z)/2. There is no any log

terms! LLA fails since for ǫ = 0 ∇2
kH(~k, ~p) = 0. Integration over the position of the

rescattering gives dP/dx ∝ L2

dPN=1

dx

∣

∣

∣

ǫ=0
=
πnL2α3

sCTPGq(x)[1 + (1− x)2 − x2/9]
8CFEx(1− x)

The Debye mass does not appear in the spectrum! In massless limit the mass scale is

given by 1/ρd(z). The photon spectrum has the same L2-dependence! [BGZ

(2001,2004)].
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Mass correction

δF ≈
π2ǫ2ρ4dy

2

2

{

2 log2

(

1

ǫ2ρ2d

)

+ log

(

1

ǫ2ρ2d

)

log

(

ǫ2

y4m4
Dρ

2
d

)

− 3 log

(

1

ǫ2ρ2d

)

−y
2m2

D

ǫ2
log

(

1

ǫ2ρ2d

)}

≈
3π2ǫ2ρ4dy

2

2
log2

(

1

ǫ2ρ2d

)

for log

(

1

ǫ2ρ2d

)

≫ 1 .

⇒ The mass correction to δ(dP/dx) is ∝ L3 and positive [Aurenche, BGZ (2009)]

δ
dPN=1

dx
=
α3
sPGq(x)[1 + (1− x)2 − x2/9]Lnǫ2ρ4d(L)

2CF
log2

(

1

ǫ2ρ2d(L)

)

.

In the OA mass correction also has an anomalous mass dependence. To obtain N = 1
term in the OA one should make replacement

1

(~k2 +m2
D)2

⇒ 2q̂δ(~k)

nα2
sCACT

~k2
which gives σqq̄(ρ) =

q̂CF

2nCA
ρ2

dPOA
N=1

dx
=

4q̂LαsPGq(x)[1 + (1− x)2 − x2/9]ǫ2ρ4d(L)
6πCACF

log

(

1

ǫ2ρ2d(L)

)
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Mass dependence and LCWF in ρ space

dσeff (x, z)

dx
= Re

∫

d~ρ ρ2ψ∗(~ρ, x)

(

σ3(ρ, x)

ρ2

)

ψm(~ρ, x, z) ,

ρ|ψ(~ρ, x)| ∝ exp(−ǫρ), ρ|ψm(~ρ, x, z =∞)| ∝ exp(−ǫ√ηρ) and the integrand is

smooth like that for the BH cross section. At z ∼< Lf ψm(ρ, x, z) oscillates. This can give

anomalous mass dependence of the spectrum.

0 2 4
-1

-0.5

0

0.5

1

(ρ Ψ(ρ,ζ))

ρ

Re

ζ=2ζ=10
ζ=0.5 ζ=0.2ζ=1

ζ=1000
Finite-size LCWF.  ζ= ρz/L  ,f in 1/     unitsε
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Accurate numerical method for all rescatterings

dσBH
eff (x, z)

dx
= Re

z
∫

0

dz1

∞
∫

z

dz2

∫

d~ρ g(x)Kv(z2, ~ρ2|z, ~ρ)σ3(ρ)K(z, ~ρ|z1, ~ρ1)
∣

∣

∣

~ρ1=~ρ2=0
.

For the vacuum Green’s function z2-integration comes up to infinity. The integral equals

the LCWF with the azimuthal quantum number m = ±1 ψ(~ρ, x) ∝ K1(ǫρ) exp(imφ). It

allows one to represent the effective Bethe-Heitler cross section in the form [BGZ (2004)]

dσBH
eff (x, z)

dx
= −αsPGq(x)

πµ(x)
Im

z
∫

0

dξ
∂

∂ρ

(

F (ξ, ρ)
√
ρ

)∣

∣

∣

∣

ρ=0

,

F is the solution to the radial Schrödinger equation for m = 1

i
∂F (ξ, ρ)

∂ξ
=

[

− 1

2µ(x)

(

∂

∂ρ

)2

− i n(z − ξ)σ3(ρ)
2

+
4m2 − 1

8µ(x)ρ2
+

1

Lf

]

F (ξ, ρ) .

with the boundary condition F (ξ = 0, ρ) =
√
ρσ3(ρ)ǫK1(ǫρ). We solve the Schrödinger

equation back in time. It allows one to have a smooth boundary condition.

We take αs = 0.4, QGP temperature T = 250 MeV, mu = 0.3, mc = 1.5, mb = 4.5,

mg = 0.4 GeV, mD =
√
2mg . In the OA we use q̂ = 0.3 GeV3
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Oscillator approximation and collinear expansion

The N = 1 term in DIS in the higher twist method [Wang, Guo (2001); Zhang, Wang

(2003)] comes from the diagrams like

Collinear expansions is equivalent to the linear approximation of vector potential

A+(y−, ~yT+~bT ) ≈ A+(y−,~bT )+~yT
∂

∂~yT
A+(y−,~bT ) , ⇒ σqq̄(yT ) ∝ ~y2T 〈F+2

T 〉 .

σqq̄(yT ) ∝
∫

d~bT 〈N |[W (~yT +~bT )−W (~bT )]2|〉 , W (~yT ) =

∫

dy−A+(y−, ~yT ) .

⇒ HT Collinear expansion=BDMPS in the OA, ⇒ N = 1 term (and any N = 2k + 1)

in HT is absent for massless partons. The calculations in momentum space confirm this

[BGZ (2001); Aurenche, BGZ, Zaraket (2008); Arnold (2009)].
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N=1 term in higher twist GWZ’s model

In Guo, Wang, Zhang (2001,2003) calcula-

tions (citation=430!) the non-zero result in

the collinear expansion comes from this dia-

gram (for z ≪ 1). GWZ use for the integral

variable the final gluon momentum lT , then

~lT

~kT

HGWZ
diag (~lT , ~kT , z, ξ) ∝

R(~lT − ~kT )

(~lT − ~kT )2
, R(~lT − ~kT ) = 1− cos

(

i(~lT − ~kT )2ξ

2Ez(1− z)

)

.

GWZ DO NOT DIFFERENTIATE the factor R, and obtain
(

∂

∂~kT

)2 R(~lT − ~kT )

(~lT − ~kT )2

∣

∣

∣

∣

∣

k=0

= R(~lT )

(

∂

∂~kT

)2 1

(~lT − ~kT )2

∣

∣

∣

∣

∣

k=0

=
4R(~lT )

l4T
.

However, the neglected terms are important. If one includes them one obtains
(

∂

∂~kT

)2 ∫

d~lT
R(~lT − ~kT )

(~lT − ~kT )2

∣

∣

∣

∣

∣

k=0

≈
(

∂

∂~kT

)2 ∫

d~lT
R(~lT )

~l2T
= 0 .
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The role of kinematical bounds for N=1

The GLV [Gyulassy, Lévai, Vitev (2001,2002,2003,2004)] group obtained even at

E ∼ 50− 500 GeV a strong kinematical suppression of energy loss

∆E = E

∫

dxx
dP

dx

The kinematic K-factor for N = 1 term for QGP with n =const [BGZ (2004)] for constant

αs=const. Curves: qi < qmax(E) (like that in GLV) my calculations; points: GLV results

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

E (GeV)

K
(E

)
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QGP in AA-collisions
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1+1 Bjorken model for expanding QGP

QGP

QGP+hadron gas

z

t

A B

τ

τ0

QGP

τfr

We use the Bjorken 1 + 1 QGP expansion T 3τ = T 3
0 τ0. n(τ) ≈ n0(τ0/τ) in the whole

range of t. To simplify the numerical calculations for each value of the impact parameter

b we neglect the variation of T0 in the transverse directions. We take for the time of QGP

creation τ0 = 0.5 fm, τmax = Lmax = 8 fm. We fix T0 using dS/dy
/

dNch/dη ≈ 7.67

[B. Mueller and K. Rajagopal (2005)]

⇒ 〈T0〉 ≈ 320 MeV (central Au+Au,
√
s = 200 GeV), 〈T0〉 ≈ 420 MeV (central Pb+Pb,

√
s = 2.76 TeV).
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Jet quenching in AA-collisions

Radiative (Bethe-Heitler) and collisional (Bjorken) energy losses modify jet evolution.

The radiative mechanism dominates, ∆EN=1
rad ∝ α3

s . The theoretical uncertainties in

RAA are large (about a factor of 2) but the variation of RAA from RHIC to LHC is more

robust.
It is interesting to compare RAA for RHIC (

√
s ∼ 200 GeV) and LHC (

√
s = 2.76 TeV).

S(
√
s = 2760)/S(

√
s = 200) ∼ 2.2⇒ T0(2.76TeV) ∼ 1.3T0(0.2TeV)⇒ αs should be

suppressed at LHC. Can we see it from jet quenching?

Can we see the flavor dependence?

– p.39



The nuclear modification factor for AA-collisions

RAA(b) =
dN(A+A→ h+X,~b)/d~pT dy

TAA(b)dσ(N +N → h+X)/d~pT dy
,

TAA(b) =
∫

d~ρTA(~ρ)TA(~ρ−~b), TA(~ρ) =
∫

dzρA(~ρ, z) is the nucleus profile function.

dN(A+A→ h+X,~b)

d~pT dy
=

∫

d~ρTA(~ρ)TA(~ρ−~b)dσm(N +N → h+X, ~ρ)

d~pT dy
,

dσm(N +N → h+X, ~ρ)/d~pT dy is the medium-modified cross section for a hard

reaction at ~ρ. In analogy to the ordinary pQCD we write

dσm(N +N → h+X)

d~pT dy
=
∑

i

∫ 1

0

dz

z2
Dm

h/i(z,Q)
dσ(N +N → i+X)

d~piT dy
, ~piT = ~pT /z

Dm
h/i

is the medium-modified FF for transition i→ h, Q ∼ piT .

dσ(N +N → i+X)/d~piT dy ∝ p−n (n ∼ 8 for RHIC and n ∼ 5 for LHC) then

qualitatively

RAA(b, pT ) ≈
∫ 1

0
dzzn−2Dm

h/i(z, pT )
[

∫ 1

0
dzzn−2Dh/i(z, pT )

]−1
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Induced one gluon emission in LCPI approach

dP/dx =
∫ L
0 dzn(z)dσBH

eff (x, z)/dx. The effective Bethe-Heitler cross section for

q → g + q reads [BGZ (1997)]

dσBH
eff (x, z)

dx
= Re

z
∫

0

dz1

∞
∫

z

dz2

∫

d~ρ ĝ(x)Kv(z2, ~ρ2|z, ~ρ)σ3(ρ)K(z, ~ρ|z1, ~ρ1)
∣

∣

∣

~ρ1=~ρ2=0

x = ωg/E, z is the position of the scattering center in QGP, σ3 = σqq̄g . For the vacuum

Green’s function Kv z2-integration up to infinity gives the LCWF with the azimuthal

quantum number m = ±1 ψ(~ρ, x) ∝ K1(ǫρ) exp(imφ) with ǫ2 = m2
qx

2 +m2
g(1− x).

The result reads [BGZ (2004)]

dσBH
eff (x, z)

dx
= −PGq(x)

πµ(x)
Im

z
∫

0

dξαs(Qeff )
∂

∂ρ

(

F (ξ, ρ)
√
ρ

)∣

∣

∣

∣

ρ=0

,

µ = Ex(1− x), Q2
eff = 1.85µ/ξ, F is the solution to the radial Schrödinger equation

for m = 1

i
∂F (ξ, ρ)

∂ξ
=

[

− 1

2µ(x)

(

∂

∂ρ

)2

− i n(z − ξ)σ3(ρ)
2

+
4m2 − 1

8µ(x)ρ2
+

1

Lf

]

F (ξ, ρ)

with Lf = 2µ(x)/ǫ2, F (ξ = 0, ρ) =
√
ρσ3(ρ)ǫK1(ǫρ). We solve the Schrödinger

equation backward in time to have a smooth boundary condition.
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Collisional energy loss, 2 → 2 processes

dEcol

dz
=

1

2Ev

∑

p=q,g

gp

∫

d~p′

2E′(2π)3

∫

d~k np(k)

2k(2π)3

×
∫

d~k′[1 + ǫpnp(k′)]

2k′(2π)3
(2π)4δ4(P +K − P ′ −K′)ω〈|M(s, t)|2〉θ(ωmax − ω)

ω = E − E′ is the energy transfer, v ≈ 1 is the quark velocity, P = (E, ~p) and

K = (k,~k) 4-momenta for incoming partons, P ′ = (E′, ~p′) and K′ = (k′, ~k′)
4-momenta for outgoing partons, M(s, t) is matrix element for Qp→ Qp scattering,

nq(k) = (ek/T + 1)−1 and ng(k) = (ek/T − 1)−1, ǫq = −1, ǫg = 1, gq = 4NcNf ,

gg = 2(N2
c − 1). Similarly to the radiative energy loss we take ωmax = E/2.

ω =
−t− tkz/E + 2~k⊥~q⊥

2(k − kz)
.

Bjorken neglected the red terms. In this case neglecting the statistical Pauli-blocking and

Bose enhancement factors one can obtain

dEcol

dz
≈ 1

2(2π)3

∑

p=q,g

gp

∫

d~k
np(k)

k

|t|max
∫

0

dt|t|dσ
dt
, |t|max ≈ 2(k − kz)ωmax .
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Parametrization of αs(Q)

0 2 4 6 8 100

0.2

0.4

0.6

0.8

α
(Q

)
s

Q [GeV]

α
s

fr

We use running αs frozen at αfr
s = 0.5, 0.4. αfr

s ≈ 0.7 was obtained from the data on

F p
2 at low x [Nikolaev, BGZ (1991,1994)], it agrees with

∫ 2GeV

0
dQ

αs(Q2)

π
≈ 0.36 GeV

obtained from the analysis of the heavy quark energy loss in vacuum [Dokshitzer,

Khoze, Troyan (1996)].
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∆E for quark: running αs is important
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The radiative (solid) and collisional (dashed) quark energy losses in expanding QGP for

L = 2.5 and 5 fm, τ0 = 0.5 fm, mq = 300 MeV, mg = 400 MeV [Lévai, Heinz (1998)].

thick: running αs with αfr
s = 0.5, thin: αs = 0.5.

T -dependent Debye mass from the lattice calculations [O. Kaczmarek and F. Zantow,

Phys. Rev., D71, 114510 (2005)] – p.44



∆E for u, c, b quarks
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GeV.

running αs with αfr
s = 0.5
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The space-time pattern of jet distortion

The formation length for the DGLAP l̄F ∼ 0.3− 1 fm for E ∼< 100 GeV (if mq ∼ 0.3 GeV

and mg ∼ 0.75 GeV).⇒The DGLAP stage gives initial condition for the induced

emission stage at τDGLAP ∼ τ0.

⇒ Dm
h/i(Q) ≈ Dh/j(Q0)⊗Dind

j/l (El)⊗DDGLAP
l/i (Q0, Q) ,

Dind
j/l

is the induced radiation FF (it depends on the parton energy E, but not the

virtuality), DDGLAP
l/i

is calculated with the PYTHIA event generator. Our scheme of the

stages of jet evolution

τQGP

h

h

h

h

h

DGLAP

Dp′
p (Q2

0, Q
2)

Dh
p(Q2

0)

QGP

Dp′
p (LQGP )indInduced stage
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The FF for the induced stage

To calculate the Dind
j/l

one needs to take into account the multiple gluon emission. There

is no an accurate method of incorporating the multiple gluon emission.

We use Landau method developed for photon emission [BDMS (2001)]

P (∆E) =
∞
∑

n=1

1

n!

[

n
∏

i=1

∫

dωi
dP (ωi)

dω

]

δ

(

∆E −
n
∑

i=1

ωi

)

exp

[

−
∫

dω
dP

dω

]

,

dP/dω is the distribution for one gluon emission. The situation is similar to multi-photon

emission QED

P (∆E) =
dPγ

dω
K(x) , ∆E = ω = xE

For thin targets the multi-photon K-factor can be evaluated analytically [BGZ (1998)]

K(x) = exp



−
1
∫

x

dx1
dPγ

dx1











1− 1

2

x
∫

0

dx1

[

dPγ

dx1
+
dPγ

dx2
− dPγ

dx1

dPγ

dx2

(

dPγ(x)

dx

)−1
]







,

where x2 = x − x1. The major x-dependence of the K-factor comes from the Sudakov

exponential factor.

– p.47



Induced FF for q → q, q → g, and g → g

For q → q we take (like Eskola, Honkanen, Salgado and Wiedemann (2004))

Dind
q/q(z)=KqqPLandau(∆E=E(1− z)) , Kqq=

∫ ∞

0
d∆EP (∆E)/

∫ E

0
d∆EP (∆E)

Kqq accounts for the leakage of the probability to ∆E > E (gluons are not soft enough!).

For momentum conservation we include q → g transition. At the one gluon level

Dind
g/q(z)=dP (z)/dz, and

∫

dzz[Dind
g/q(z) +Dind

q/q(z)] = 1

.
FF for multiple gluon emission we take Dind

g/q
(z)=KgqdP (z)/dz with Kgq fixed from

momentum conservation
∫

dzz[Dind
g/q

(z) +Dind
q/q

(z)] = 1.

It is reasonable since RAA is sensitive to FFs at z ∼ 1 [BDMS (2001)] where q → g
distribution should not be very sensitive to the multiple gluon emission.

For g → g we can use only the momentum conservation. In the first step we define

D̄ind
g/g

(z) = PLandau(∆E(1− z)) z > 0.5. At z < 0.5 (where the multiple gluon

emission and the Sudakov suppression strongly compensate each other) we use the one

gluon formula D̄ind
g/g

(z) = dP/dz . Finally we define Dind
g/g

(z) = KggD̄ind
g/g

(z). Kgg is

fixed from the momentum sum rule
∫

dzzDind
g/g

(z) = 1.
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We treat the collisional loss as a perturbation and incorporate it by a small

renormalization of TQGP according to the change in the ∆E due to the collisional

energy loss

∆Erad(T
′) = ∆Erad(T ) + ∆Ecol(T )

The collisional loss decreases RAA by 15-25 %.

We calculate the cross sections dσ(N +N → i+X)/d~piT dy using the LO pQCD

formula with the CTEQ6 PDFs. To account for the nuclear modification of the PDFs
(which leads to some small deviation of RAA from unity even without energy loss) we

include the EKS98 correction [K.J. Eskola, V.J. Kolhinen, and C.A. Salgado, Eur. Phys. J.

C9, 61 (1999)]. . To simulate the higher order K-factor in the hard cross sections we use

αs(cQ) with c = 0.265 (like that in PYTHIA). For the FFs Dh/q(g)(z,Q0) we use the KKP

parametrization [B. A. Kniehl, G. Kramer, and B. Potter, Nucl. Phys. B582, 514 (2000)]
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Comparison with RAA for light hadrons
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RAA for non-photonic electrons s1/2 = 200 GeV
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RAA for non-photonic electrons s1/2 = 2.76 TeV
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v2 for non-photonic electrons
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RAA for D-mesons s1/2 = 2.76 TeV
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Conclusions:

The LCPI approach describes very well the data on the LPM effect for e→ γe
obtained at SLAC and CERN SPS

The finite-size effects can lead to an enhancement of the gluon emission from

heavy quarks as compared to that from the light quarks at L ∼< Lf . The results of

our calculations in the OA disagree strongly with Dokshitzer-Kharzeev estimates

obtained neglecting the finite-size effects.

In expanding QGP for RHIC-LHC conditions the gluon emission from the c-quark is

very similar to that from the light quarks. At the E ∼> 100 GeV b-quark radiates

stronger than c and light quarks at x ∼< 0.5.

In the higher-twist model the N = 1 term vanishes in the massless limit. In the

calculations by Wang, Guo and Zhang the collinear expansion is made incorrectly,

and for this reason they obtained nonzero result.

The nuclear modification factor RAA for the RHIC and LHC is calculated

accounting for both the radiative and collisional energy losses with the running αs

and fluctuations of parton path length in QGP. The effect of the collisional energy

loss is relatively small.

Comparison with the RHIC PHENIX and LHC CMS-ALICE data on RAA gives

evidence in favor of somewhat stronger thermal suppression of αs at LHC. We

have αfr
s ≈ 0.5 at

√
s = 200 GeV and αfr

s ≈ 0.4 at
√
s = 2.76 TeV. It seems that

the QGP really becomes more perturbative at LHC. The pQCD gives a reasonable

description of the flavor dependence of RAA. – p.55
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Formulas for e → γe

dPγ

dx
=
dPBH

γ

dx
+
dPabs

γ

dx
,

dPBH
γ

dx
= T

dσBH

dx
, T =

∫ L

0
dzn(z) ,

dσBH

dx
=

∫

d~ρW eγ
e (x, ~ρ)σ(ρx) , W eγ

e (x, ~ρ) =
1

2

∑

{λi}
|Ψ(x, ~ρ, {λi})|2 ,

dPabs
γ

dx
= −1

4
Re
∑

{λi}

L
∫

0

dz1n(z1)

L
∫

z1

dz2n(z2)

∫

d~ρΨ∗(x, ~ρ, {λi})

×σ(ρx)Φ(x, ~ρ, {λi}, z1, z2) exp
[

− i(z2 − z1)
Lf

]

.
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i
∂Φ(x, ~ρ, {λi}, z1, z2)

∂z2
=

[

− 1

2µ(x)

(

∂

∂~ρ

)2

− i n(z)σeē(x|~ρ|)
2

]

Φ(x, ~ρ, {λi}, z1, z2)

The boundary condition reads

Φ(x, ~ρ, {λi}, z1, z1) = Ψ(x, ~ρ, {λi})σ(ρx) .

σ(ρ) = ρ2C(ρ) , C(ρ) = Z2Cel(ρ) + ZCin(ρ) .

Cel(ρ) = 4πα2

[

log

(

2ael

ρ

)

+
(1− 2γ)

2
− f(Zα)

]

, ael = 0.81rBZ
−1/3 ,

f(y) = y2
∞
∑

n=1

1

n(n2 + y2)
,

Cin(ρ) = 4πα2

[

log

(

2ain

ρ

)

+
(1− 2γ)

2

]

, ain = 5.3rBZ
−2/3
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Gluon synchrotron radiation

q ω ≫ mg

Rq

Lf ≪ min(Rq, Rq′, Rg)

E,E′ ≫ mq

q′

Rq′

Rg

g

The small angle approximation is applicable at the scale L ∼ Lf ⇒ One can define

dP/dxdL, and calculate it for a slab with thickness Rg,q ≫ L≫ Lf .

Gluon emission due to multiple scattering and synchrotron radiation should be treated on

even footing, but we neglect the interference of the two mechanisms

N = 0 N = 1 N = 2

– p.60



For SU(3) it is enough to consider chromomagnetic field with color components

a = 3 and a = 8. For radiated gluons we use the color states Q = (QA, QB) with

definite color isospin, QA, and color hypercharge, QB .

There are 2 neutral gluons A = G3 and B = G8, and 6 charged gluons

X, Y, Z, X̄, Ȳ , Z̄ given by

X = (G1 + iG2)/
√
2, Q = (−1, 0),

Y = (G4 + iG5)/
√
2, Q = (−1/2,−

√
3/2),

Z = (G6 + iG7)/
√
2, Q = (1/2,−

√
3/2).

The S-matrix element of the q → gq′ synchrotron transition can be written as

〈gq′|Ŝ|q〉 = −ig
∫

dyψ̄q′ (y)γ
µG∗

µ(y)ψq(y) .

We write each quark wave function in the form

ψi(y) = exp[−iEi(t− z)]ûλφi(z, ~ρ)/
√
2Ei, where λ is quark helicity, ûλ is the

Dirac spinor operator.
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The z-dependence of the transverse wave functions φi for a parton with color vector

Q = (QA, QB) is governed by the two-dimensional Schrödinger equation

i
∂φi(z, ~ρ)

∂z
=
{ (~p− gQn

~Gn)2 +m2
q

2Ei
+ gQn(G

0
n −G3

n)
}

φi(z, ~ρ) ,

where G is the external vector potential (the superscripts are the Lorentz indexes and

n = A,B). The gluon wave function can be represented in a similar way.

We take the external potential in the form G3
n = [ ~Hn × ~ρ]3, ~Gn = 0, G0

n = 0 (the electric

field can be included as well). −gQnG3
n can be viewed as the potential energy in the

impact parameter plane Ui = −~Fi · ~ρ, where ~Fi is the corresponding Lorentz force. The

φi(z, ~ρ) can be taken in the form

φi(z, ~ρ) = exp

{

i~pi(z)~ρ−
i

2Ei

∫ z

0
dz′[~p2i (z

′) +m2
q ]

}

,

d~pi

dz
= ~Fi(z) .
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〈gq′|Ŝ|q〉 = −ig(2π)3δ(Eg + Eq′ − Eq)

∫ ∞

−∞
dzV (z, {λ})δ(~pg(z) + ~pq′(z)− ~pq(z))

× exp

{

−i
∫ z

0
dz′
[

~p 2
q (z′) +m2

q

2Eq
−
~p 2
g (z′) +m2

g

2Eg
−
~p 2
q′
(z′) +m2

q

2Eq′

]}

,

where V is the spin vertex factor.

Using ~pg(z) + ~pq′ (z) = ~pq(z) (since ~Fq = ~Fg + ~Fq′ ) we obtain the gluon spectrum

dP

dx
=

1

(2π)2

∫

d~pg(∞)

∫

dz1dz2g(z1, z2)

× exp

{

i

∫ z2

z1

dz

[

~p 2
q (z) +m2

q

2Eq
−
~p 2
g (z) +m2

g

2Eg
−
~p 2
q′
(z) +m2

q

2Eq′

]}

,

g(z1, z2) =
Cαs

8E2
qx(1− x)

∑

{λ}
V ∗(z2, {λ})V (z1, {λ}) = g1~q(z2)~q(z1)/µ

2 + g2 (1)

with g1 = Cαs(1− x+ x2/2)/x, g2 = Cαsm2
qx

3/2µ2, C = |λafiχ∗
a/2|2.

~q(z) = ~pg(z)(1− x)− ~pq′ (z)x, µ = Eqx(1− x).
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Gluon emission in a uniform field

For a uniform field ~q(z2)~q(z1) = [ ~Q 2 − ~f 2τ2/4], ~Q = ~q((z1 + z2)/2), τ = z2 − z1, and

~f = d~q/dz = ~Fg(1− x)− ~Fq′x. After replacing the integration over ~pg(∞) by the

integration over ~Q we obtain

dP

dLdx
=

1

(2π)2

∫

d ~Q

∫ ∞

−∞
dτ

[

g1

µ2

(

~Q 2 −
~f 2τ2

4

)

+ g2

]

exp [−iΦ(τ, ~Q)] ,

with Φ(τ, ~Q) =
(ǫ2+~Q2)τ

2µ
+

~f 2τ3

24µ
ǫ2 = m2

qx
2 +m2

g(1− x). Integrating over τ by parts

one can kill ~Q2

dP

dLdx
= − 1

(2π)2

∫

d ~Q

∫ ∞

−∞
dτ

[

g1

µ2

(

ǫ2 +
~f 2τ2

2

)

− g2
]

exp [−iΦ(τ, ~Q)] .

⇒ dP

dLdx
=
iµ

2π

∫ ∞

−∞

dτ

τ

[

g1

µ2

(

ǫ2 +
~f 2τ2

2

)

− g2
]

exp

{

−i
[

ǫ2τ

2µ
+
~f 2τ3

24µ

]}

.

Here it is assumed that τ has a small negative imaginary part. The integral around the

lower semicircle near the pole at τ = 0 plays the role of the ~f = 0 subtraction term.
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In terms of the Airy function Ai(z) = 1
π

√

z
3
K1/3(2z

3/2/3) (K1/3 is the Bessel function)

the spectrum reads

dP

dLdx
=
a

κ
Ai

′

(κ) + b

∫ ∞

κ
dyAi(y) ,

where a = −2ǫ2g1/µ, b = µg2 − ǫ2g1/µ, κ = ǫ2/(µ2 ~f 2)1/3.

Thus the effect of field is only accumulated in ~f 2 = ~F 2
q′
x2g − 2~Fq′

~Fgxq′xg + ~F 2
g x

2
q .

Our spectrum disagrees with that obtained by Shuryak and Zahed [Phys. Rev. D67,

054025 (2003)] in the soft gluon limit within the Schwinger’s proper time method.

In the SZ formula the argument of the exponential contains ~F 2
q′
x2g + ~F 2

g .

In the pre-exponential factor instead of ~f2 SZ have ~F 2
q′
x2g .

The SZ predictions are physically absurd: The spectrum is insensitive to the relation

between the signs of the color charges of the final partons. The q1 → gZq3 transition for

the chromomagnetic field in the color state A in the massless limit vanishes (since

~Fq′ = 0). This process is analogous to the synchrotron radiation in QED, and there is no

physical reason why it should vanish. Since the pre-exponential factor contains the

Lorentz forces in non-symmetric form it is clear that the g → gg spectrum will have

incorrect permutation properties.
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q1 → gAq1, Qq
A = 1/2, Qq′

A = 1/2, Qg
A = 0 (analogous to e→ γe in QED)

q1 → gZq3, Qq
A = 1/2, Qq′

A = 0, Qg
A = 1/2 (vanishes in SZ)

q1 → gX̄q2, Qq
A = 1/2, Qq′

A = −1/2, Qg
A = 1

q3 → gY q1, Qq
A = 0, Qq′

A = 1/2, Qg
A = −1/2
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Energy loss due to synchrotron radiation

Without magnetic field jet quenching is dominated by the induced gluon emission due to

multiple scattering on thermal partons. The collisional energy loss gives small effect

∆Ecol/∆Erad ∼ 0.2− 03, and ∆Ecol/E ∼ 0.03− 0.05 at E ∼< 40 GeV

Can the synchrotron radiation modify strongly the jet quenching?

ǫmag

ǫthermal
∼ αs

(

gH

m2
D

)2

This ratio is ∼ 0.3 if gH ∼ m2
D . Such a value of magnetic field is required by the

scenario with turbulent viscosity [Asakawa, Bass, Müller (2007)] for explaining small η/s.

gH ∼ m2
D gives ∆E/E ∼ 0.1− 0.2 at E ∼ 10− 20 GeV for L ∼ 2− 4 fm.

The finite-size effects become important if Lc ∼ L. We have Lc ∼ 1− 2 fm. The

finite-size effects may suppress the energy loss by a factor ∼ 0.5.

The finite coherence length of the turbulent magnetic field, Lm, suppresses the radiation

as well. For the unstable magnetic field modes the wave vector k2 ∼< ξm2
D [Asakawa,

Bass, Müller (2007)], we have Lm/Lc ∼> 1. The turbulent suppression should not be

strong, and as a plausible estimate one can take the turbulent suppression factor ∼ 0.5.

With these suppression factors we have

∆Esynch ∼ ∆Ecoll
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Conclusions:

We have developed a quasiclassical theory of the synchrotron-like gluon radiation.

In the QGP the gluon spectrum is dominated by the processes with emission of the

charged gluons, the effect of the neutral gluons is relatively small.

The parton energy loss due to the synchrotron radiation may be important in the

jet quenching if the QGP instabilities generate magnetic field H ∼ m2
D/g.

Our gluon spectrum disagrees with that obtained by Shuryak and Zahed. Simple

physical arguments are given that the SZ spectrum is incorrect.
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