Dense baryon matter with isospin and chiral imbalance in the framework of NJL₄ model at large N_c: duality between chiral symmetry breaking and charged pion condensation

> R.N. Zhokhov in collaboration with T.G. Khunjua K.G. Klimenko

> > 30 октября 2017 г.

うして ふゆう ふほう ふほう うらつ

QCD at nonzero temperature and baryon chemical potential plays a fundamental role in many different physical systems. QCD at extreme conditions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- neutron stars
- heavy ion collision experiments
- Early Universe

QCD Phase Diagram

Two main phase transition

- confinement-deconfinement
- chiral symmetry breaking phase—chriral symmetric phase

Methods of dealing with QCD

Methods of dealing with QCD

- perturbative QCD, pQCD, high energy
- First principle calculation lattice Monte Carlo simulations, LQCD
- Effective models

Chiral pertubation theory χPT Nambu–Jona-Lasinio model NJL

- Polyakov-loop extended Nambu–Jona-Lasinio model PNJL Quark meson model
- 1/N expansion (large number of colors) G.t'Hooft. the predictions of $\frac{1}{N_c}$ expansions for QCD are mostly of a qualitative nature
- Holographic methods, Gauge/gravity or gauge/string duality AdS/CFT conjecture

Nambu-Jona-Lasinio model

$$egin{split} \mathcal{L} &= ar{q} \gamma^{
u} \mathrm{i} \partial_{
u} q + rac{G}{N_c} \Big[(ar{q} q)^2 + (ar{q} \mathrm{i} \gamma^5 q)^2 \Big] \ & q
ightarrow \mathrm{e}^{i \gamma_5 lpha} q \end{split}$$

continuous symmetry

$$\begin{split} \widetilde{\mathcal{L}} &= \bar{q} \Big[\gamma^{\rho} \mathrm{i} \partial_{\rho} - \sigma - \mathrm{i} \gamma^5 \pi \Big] q - \frac{N_c}{4G} \Big[\sigma^2 + \pi^2 \Big]. \\ & \mathbf{Chiral \ symmetry \ breaking} \\ & 1/N_c \ \text{expansion, leading \ order} \\ & \langle \bar{q}q \rangle \neq 0 \\ & \langle \sigma \rangle \neq 0 \quad \longrightarrow \quad \widetilde{\mathcal{L}} = \bar{q} \Big[\gamma^{\rho} \mathrm{i} \partial_{\rho} - \langle \sigma \rangle \Big] q \end{split}$$

Isotopic chemical potential

Dense matter with isotopic imbalance in neutron stars, heavy ion collision experiments

$$n_I = n_u - n_d \quad \longleftrightarrow \quad \mu_I = \mu_u - \mu_d$$

axial chemical potential

Systems with chiral imbalance have attracted some interest in recent years.

Chiral imbalance is a nonzero difference between densities of leftand right-handed fermions,

$$n_5 = n_R - n_L \quad \longleftrightarrow \quad \mu_5 = \mu_R - \mu_L$$

stems from highly nontrivial interplay of chiral symmetry of QCD, axial anomaly, and the topology of gluon configurations and leads to the chiral magnetic effect.

Axial isotopic chemical potential

Term in the Lagrangian $- \bar{q} \frac{\mu_{I5}}{2} \tau_3 \gamma^0 \gamma^5 q$

$$\mu_{I5} = \mu_{uR} - \mu_{uL} + \mu_{dL} - \mu_{dR}$$

So the corresponding density is

$$n_{I5} = n_{uR} - n_{uL} + n_{dL} - n_{dR}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Axial isotopic chemical potential leads to the chiral imbalance.

(1+1)-dimensional Gross-Neveu (GN) model possess a lot of common features with QCD

- renormalizability
- asymptotic freedom
- sponteneous chiral symmetry breaking in vacuum
- dimensional transmutation
- have the similar $\mu_B T$ phase diagrams

Relative simplicity, renormalizability $\rightarrow NJL_2$ model can be used as a laboratory for the qualitative simulation of specific properties of QCD at arbitrary energies We showed that chiral isospin chemical potential generates charged

pion condensation in dense quark matter

We consider a NJL model, which describes dense quark matter with two massless quark flavors (u and d quarks).

$$\mathcal{L} = \bar{q} \Big[\gamma^{\nu} \mathrm{i} \partial_{\nu} + \frac{\mu_B}{3} \gamma^0 + \frac{\mu_I}{2} \tau_3 \gamma^0 + \frac{\mu_{I5}}{2} \tau_3 \gamma^0 \gamma^5 \Big] q +$$
(1)
$$\frac{G}{N_c} \Big[(\bar{q}q)^2 + (\bar{q} \mathrm{i} \gamma^5 \vec{\tau}q)^2 \Big]$$

q is the flavor doublet, $q = (q_u, q_d)^T$, where q_u and q_d are four-component Dirac spinors as well as color N_c -plets; τ_k (k = 1, 2, 3) are Pauli matrices.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Lagrangian is invariant with respect to the abelian $U_B(1)$, $U_{l_3}(1)$ and $U_{Al_3}(1)$ groups,

$$U_B(1): q \to \exp(i\alpha/3)q;$$
 (2)

$$U_{l_3}(1): q \to \exp(i\alpha \tau_3/2)q;$$
 (3)

$$U_{Al_3}(1): q \to \exp(i\alpha\gamma^5\tau_3/2)q.$$
(4)

Lagrangian (1) is invariant with respect to the electromagnetic $U_Q(1)$ group,

$$U_Q(1): q \to \exp(iQ\alpha)q,$$
 (5)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

where Q = diag(2/3, -1/3).

To find the thermodynamic potential of the system, we use a semi-bosonized version of the Lagrangian (1), which contains composite bosonic fields $\sigma(x)$ and $\pi_a(x)$ (a = 1, 2, 3)

$$\widetilde{L} = \bar{q} \Big[\gamma^{\rho} i \partial_{\rho} + \mu \gamma^{0} + \nu \tau_{3} \gamma^{0} + \nu_{5} \tau_{3} \gamma^{1} - \sigma - i \gamma^{5} \pi_{a} \tau_{a} \Big] q$$

$$-\frac{N_c}{4G} \Big[\sigma \sigma + \pi_a \pi_a \Big]. \tag{6}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

For bosonic fields one has

$$\sigma(x) = -2\frac{G}{N_c}(\bar{q}q); \quad \pi_a(x) = -2\frac{G}{N_c}(\bar{q}i\gamma^5\tau_a q). \tag{7}$$

Chiral density wave and plane pion wave

$$\langle \sigma(x) \rangle = M \cos(2bx), \ \langle \pi_3(x) \rangle = M \sin(2bx),$$

 $\langle \pi_1(x) \rangle = \Delta \cos(2b'x), \ \langle \pi_2(x) \rangle = \Delta \sin(2b'x),$
 $\langle \pi_+(x) \rangle = \Delta e^{2b'x}, \ \langle \pi_-(x) \rangle = \Delta e^{-2b'x},$

8 where M, b, b' and Δ are constant dynamical quantities. We will use the following ansat: $\langle \sigma(x) \rangle$ and $\langle \pi_a(x) \rangle$ do not depend on spacetime coordinates x,

$$\langle \sigma(x) \rangle = M, \quad \langle \pi_1(x) \rangle = \Delta, \quad \langle \pi_2(x) \rangle = 0, \quad \langle \pi_3(x) \rangle = 0.$$
 (8)

うして ふゆう ふほう ふほう うらつ

where M and Δ are already constant quantities.

We will use the following ansat: $\langle \sigma(x) \rangle$ and $\langle \pi_a(x) \rangle$ do not depend on spacetime coordinates x,

$$\langle \sigma(x) \rangle = M, \quad \langle \pi_1(x) \rangle = \Delta, \quad \langle \pi_2(x) \rangle = 0, \quad \langle \pi_3(x) \rangle = 0.$$
 (9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where M and Δ are already constant quantities.

In the leading order of the large N_c -expansion it is defined by the following expression:

$$\int d^4 x \Omega(M, \Delta) = -\frac{1}{N_c} \mathcal{S}_{\text{eff}} \{ \sigma(x), \pi_a(x) \} \Big|_{\sigma(x) = \langle \sigma(x) \rangle, \pi_a(x) = \langle \pi_a(x) \rangle},$$
(10)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

For the thermodynamic potential one can obtain

$$\Omega(M,\Delta) = \frac{M^2 + \Delta^2}{4G} + i \int \frac{d^4p}{(2\pi)^4} \ln \overline{D}(p), \qquad 07 \qquad (11)$$

where

$$\overline{D}(p) = (\eta^4 - 2a\eta^2 - b\eta + c)(\eta^4 - 2a\eta^2 + b\eta + c) \equiv P_-(p_0)P_+(p_0),$$

where $\eta = p_0 + \mu$, $|\vec{p}| = \sqrt{p_1^2 + p_2^2 + p_3^2}$ and

$$a = M^{2} + \Delta^{2} + |\vec{p}|^{2} + \nu^{2} + \nu_{5}^{2}; \quad b = 8|\vec{p}|\nu\nu_{5};$$

$$c = a^{2} - 4|\vec{p}|^{2}(\nu^{2} + \nu_{5}^{2}) - 4M^{2}\nu^{2} - 4\Delta^{2}\nu_{5}^{2} - 4\nu^{2}\nu_{5}^{2}.$$
(13)

$$\nu = \frac{\mu_1}{2} \qquad \nu_5 = \frac{\mu_{15}}{2}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

The thermodynamic potential is invariant with respect to the so-called duality transformation

$$\mathcal{D}: \ M \longleftrightarrow \Delta, \ \nu \longleftrightarrow \nu_5, \tag{14}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

If we change axes $\nu \leftrightarrow \nu_5$ then we should exchange phases PC \leftrightarrow CSB. For projections of thermodynamic potential

$$egin{aligned} F_1(M) &\equiv \Omega(M,\Delta=0) \ F_2(\Delta) &\equiv \Omega(M=0,\Delta) \ F_2(\Delta) &= F_1(\Delta) \ ert_{
u \leftarrow
u
u
u}. \end{aligned}$$

- Dualities between chiral and superconducting condensates in (2+1) and (1+1) NJL like models.
- Orbifold equivalences connect gauge theories with different gauge groups and matter content in the large Nc limit. There has been found the dualities akin to ours in the framework of universality principle (large N_c orbifold equivalence) of phase diagrams in QCD and QCD-like theories in the limit of large N_c .

Condansates ansatz: inhomogeneous condensate chiral density wave and pion wave

Chiral density wave and plane pion wave

$$egin{aligned} &\langle \sigma(x)
angle &= M\cos(2bx), \ \langle \pi_3(x)
angle &= M\sin(2bx), \ &\langle \pi_1(x)
angle &= \Delta\cos(2b'x), \ &\langle \pi_2(x)
angle &= \Delta\sin(2b'x), \ &\langle \pi_+(x)
angle &= \Delta e^{2b'x}, \ &\langle \pi_-(x)
angle &= \Delta e^{-2b'x}, \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where M, b, b' and Δ are constant dynamical quantities.

The expression for thermodynamic potential is quite complicated, but one can prove that the thermodynamic potential is invariant with respect to the duality transformation

$$\mathcal{D}: M \longleftrightarrow \Delta, \quad \nu \longleftrightarrow \nu_5, \quad b \longleftrightarrow b'. \tag{15}$$

$$\Omega(M, b, \Delta, b') \mid_{\mathcal{D}} = \Omega(M, b, \Delta, b')$$
(16)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If we change axes $\nu \longleftrightarrow \nu_5$ then we should exchange phases PC \longleftrightarrow CSB.

Phase structure of (1+1)-dim NJL model

Phase structure of the (1+1) dim NJL model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Phase portrait (μ, ν, ν_5) of NJL₂ in homogeneous case

Phase portrait of NJL₂ in homogeneous case

Puc.: The (ν, μ) -phase portrait of the model for different values of the chiral chemical potential ν_5 : (a) The case $\nu_5 = 0$. (b) The case $\nu_5 = 0.2m$.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Э

Phase portrait of NJL₂ in homogeneous case

Puc.: The (ν, μ) -phase portrait of the model for different values of the chiral chemical potential ν_5 :(a) The case $\nu_5 = 0.5m$. (b) The case $\nu_5 = m$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Phase portrait (μ, ν, ν_5) in the framework of NJL₂ in inhomogeneous case

Phase structure of (3+1)-dim NJL model

Phase structure of the (3+1)-dim NJL model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

(u, u_5) phase portrait at different μ of NJL4

Рис.: (ν, ν_5) phase diagram at $\mu = 0$ GeV

Рис.: $(
u,
u_5)$ phase diagram at $\mu = 0.195$ GeV

comparison with lattice QCD

Puc.: critical temperature as a function of μ_5 , SU(3) case arXiv:1512.05873 [hep-lat]

Puc.: chiral condensate as a function of μ_5 , SU(2) case arXiv:1503.06670 [hep-lat]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

comparison with lattice QCD

Puc.: critical temperature as a function of μ_5 , SU(3) case arXiv:1512.05873 [hep-lat]

Puc.: chiral condensate as a function of μ_5 , SU(2) case arXiv:1503.06670 [hep-lat]

Рис.: (ν, ν_5) phase diagram at $\mu = 0.24$ GeV

Рис.: (ν, ν_5) phase diagram at $\mu = 0.26$ GeV

Рис.: $(
u,
u_5)$ phase diagram at $\mu = 0.55$ GeV

Рис.: (ν, ν_5) phase diagram at $\mu = 0.8$ GeV

(μ, u) phase portrait at different u_5 of NJL₄

Puc.: (μ, ν) phase diagram at $ν_5 = 0$ GeV

Рис.: (μ, ν) phase diagram at $\nu_5 = 0.195$ GeV

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

(μ, u) phase portrait at $u_5 = 0 \, \overline{GeV}$ of NJL₄

(ν, T) phase portrait at $\nu_5 = 0 \ GeV$ of NJL₄

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

(u, T) phase portrait comparison with lattice QCD

Рис.: (ν, T) phase diagram at $\mu = 0$ and $\nu_5 = 0$ GeV

Рис.: (ν, T) phase diagram arXiv:1611.06758 [hep-lat]

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ 釣��

(u, T) phase portrait comparison with lattice QCD

Puc.: (ν, T) phase diagram at $\nu_5 = 0$ GeV from J. Phys. G: Nucl. Part. Phys. 37 015003 (2010) Puc.: (ν, T) phase diagram at $\nu_5 = 0$ GeV arXiv:1611.06758 [hep-lat]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

(u, T) phase portrait from arXiv:1611.06758 [hep-lat]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

(μ, u) and (μ, u_5) phase portraits, use of duality

Рис.: (μ, ν) phase diagram at $\nu_5 = 0.17$ GeV

Рис.: (μ, ν_5) phase diagram at u = 0.17 GeV

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

(μ, u) phase portrait at $u_5=0.8~GeV$ of NJL₄

no chiral limit

Puc.: M_0 and Δ_0 as a function of ν_5 and ν at $\nu = 0$ and $\nu_5 = 0$ respectively

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Comparison of phase diagram of (3+1)-dim and (1+1)-dim NJL models

Comparison of phase diagram of (3+1)-dim and (1+1)-dim NJL models

(μ, u) phase portraits comparison, NJL₂ and NJL₄

Puc.: (μ, ν) phase diagram in the framework of NJL₂ model at $\nu_5 = 0$ GeV Puc.: (μ, ν) phase diagram in the framework of NJL₄ model at $\nu_5 = 0.195$ GeV

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

v₅ = 0.195 GeV

(μ, u) phase portraits comparison, NJL₂ and NJL₄

Puc.: (μ, ν) phase diagram in the framework of NJL₂ model at $\nu_5 = 0$ GeV Puc.: (μ , ν) phase diagram in the framework of NJL₄ model at $\nu_5 = 0.15$ GeV

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Conclusions

We studied chirally ($\mu_{I5} \neq 0$) and isotopically ($\mu_{I} \neq 0$) asymmetric dense ($\mu_{B} \neq 0$) quark matter in the framework of (3+1)-dim NJL model.

- Chiral isospin chemical potential generates charged pion condensation in (3+1)-dim NJL model. So generations of charged pion condensation due to chiral isospin chemical potential is predicted in two models (4D NJL and NJL₂) and might be the property of real QCD.
- It has been also demonstrated that in the framework of the (3+1)-dim NJL model duality correspondence between CSB and charged PC phenomena takes place in the leading order of the large-Nc approximation as in NJL₂ model.
- In contrast to NJL₂ model results in 4D NJL generation of PC_d requires not very large but nonzero isospin chemical potential.
 In order to generate PC_d phase one needs to have both nonzero isospin μ₁ and chiral isospin μ₁₅ chemical potentials.