Рождение пары мюонов на БАК в процессе, индуцированном фотонами, в модели с дополнительной размерностью и малой кривизной пространства-времени

А.В. Киселев

Отдел теоретической физики НИЦ «Курчатовский институт» - ИФВЭ

(совместно c: Salih Inan, Cumhuriyet University, Turkey)

Опубликовано в: ЕРЈС, 78 (2018) 729

Семинар ОТФ, 9 октября 2018 года

...всего натуральнее было бы постановить, что только те науки распространяют свет, кои способствуют выполнению начальственных предписаний.

> М.Е. Салтыков -Щедрин, «Дневник провинциала в Петербурге»

План доклада

- Эксклюзивное рождение в столкновении фотонов и его экспериментальное изучение.
- Модель Рандалл-Сундрума (РС) с одной дополнительной размерностью и ее обобщение.
- Процесс на БАК, индуцированный фотонами.
 Приближение эквивалентных фотонов.
- Дифференциальное и полное сечения для процесса pp → рүүр → рµ⁺µ⁻р при энергии 14 ТэВ в РС модели с малой кривизной пространства-времени.
- Заключение.

Photon-induced exclusive production

Schematic diagram for the reaction pp \rightarrow p $\gamma p \rightarrow$ pXp (X = $\mu^+\mu^-$, e⁺e⁻, $\gamma\gamma$, WW, ZZ, H, etc.)

Forward detectors at the LHC can detect intact outgoing protons in interval:

$$\xi_{\min} < \xi < \xi_{\max}$$

where $\boldsymbol{\xi}$ is momentum fraction loss of the proton

Acceptance ranges:

ATLAS Forward Physics Collaboration (AFP) $0.0015 < \xi < 0.15$ $0.015 < \xi < 0.15$

CMS-TOTEM Precision Proton Spectrometer (CT-PPS)

 $0.0015 < \xi < 0.5$ $0.1 < \xi < 0.5$

Experimental studies of photon-induced reactions

Tevatron, CDF Collaboration, 2009: $pp \rightarrow p\gamma\gamma p \rightarrow pl^+l^-p (l = e, \mu)$

LHC (7 TeV), CMS Collaboration, 2012: pp \rightarrow pyyp \rightarrow pl⁺l⁻p (l =e,µ)

LHC (7 TeV), ATLAS Collaboration, 2014: pp \rightarrow pyyp \rightarrow pl⁺l⁻p (l =e,µ)

LHC (8 TeV), ATLAS Collaboration, 2016: pp \rightarrow pyyp \rightarrow pl⁺l⁻p (l =e,µ) First observation of proton-tagging $\gamma\gamma$ collision: LHC (13 TeV), CMS-TOTEM Collaboration, 2018 pp \rightarrow p $\gamma\gamma$ p* \rightarrow pl⁺l⁻p* m(l⁺l)>110 GeV 12 $\mu^+\mu^-$, 8 e⁺e⁻

Randall-Sundrum scenario

Background metric (y is extra coordinate)

Periodicity: $(x, y \pm 2\pi r_c) = (x, y)$ Z₂-symmetry: (x, y) = (x, -y)

orbifold S^1/Z_2 $0 \le y \le \pi r_c$

Two fixed points: y=0 and y= πr_c two (1+3)-dimensional branes

5-dimensional action $S = S_g + S_1 + S_2$

$$S_g = \int d^4x \int dy \sqrt{G} \left(2M_5^3 R^{(5)} - \Lambda \right) \text{ (gravity term)}$$

$$S_{1(2)} = \int d^4 x \sqrt{g_{1(2)}} \left(L_{1(2)} - \Lambda_{1(2)} \right)$$
 (brane terms)

Einstein-Hilbert's equations:

$$\sigma'^{2}(y) = -\frac{\Lambda}{24M_{5}^{3}}$$
$$\sigma''(y) = \frac{1}{12M_{5}^{3}} [\Lambda_{1}\delta(y) + \Lambda_{2}\delta(\pi r_{c} - y)]$$

Original Randall-Sundrum solution

(Randall & Sundrum, 1999)

$$\sigma_{\rm RS}(y) = \kappa |y| \quad \Lambda_{\rm RS} = -24M_5^3\kappa^2, \quad (\Lambda_1)_{\rm RS} = -(\Lambda_2)_{\rm RS} = 24M_5^3\kappa$$

$$\sigma'_{\rm RS}(y) = \kappa \varepsilon(y) \qquad \sigma''_{\rm RS}(y) = 2\kappa \delta(y)$$

The RS solution:

- -does not explicitly reproduce the jump on TeV brane (at y=πr_c)
- is not symmetric with respect to both branes (located at y=0 and y=πr_c)
- does not include a constant term

Generalization of RS solution

Two equivalent solutions related to different branes

Generalized solution $(0 \le C \le \kappa \pi r_c)$

$$\sigma(y) = \frac{1}{2} \left[\sigma_0(y) + \sigma_{\pi}(y) \right] - C = \frac{\kappa}{2} \left(|y| - |y - \pi r_c| \right) + \frac{\kappa \pi r_c}{2} - C$$

with fine tuning

$$\Lambda = -24M_5^3 \kappa^2, \quad \Lambda_1 = -\Lambda_2 = 12M_5^3 \kappa$$

1-st derivative of $\sigma(\mathbf{y})$
$$\int \mathbf{factor of 2 different} \\ factor of RS$$

$$\sigma'(y) = \frac{\kappa}{2} [\varepsilon(y) - \varepsilon(y - \pi r_c)]$$

**2-nd derivative of
$$\sigma(y) \quad \sigma''(y) = \kappa [\delta(y) - \delta(y - \pi r_c)]$$**

Hierarchy relation $M_{\rm Pl}^2 = \frac{M_5^3}{\kappa} \exp(2\mathbf{C})$

Interaction Lagrangian (massive gravitons only)

$$L(x) = -\frac{1}{\Lambda_{\pi}} \sum_{n=1}^{\infty} h_{\mu\nu}^{(n)}(x) T_{\alpha\beta}(x) \eta^{\mu\alpha} \eta^{\nu\beta}$$

Masses of KK gravitons (x_n are zeros of J₁(x))

$$m_n = x_n \frac{M_{\rm Pl}}{\sqrt{\exp(2\pi\kappa r_c) - 1}} \left(\frac{\kappa}{M_5}\right)^{3/2}$$

Masses of KK gravitons m_{n} and coupling Λ_{π} depend on C via M_{5} and κ

Different values of C result in quite diverse physical models

Two interesting physical scenarios

I. C = 0
$$\sigma(0) = 0, \quad \sigma(\pi r_c) = \kappa \pi r_c$$

Masses of KK resonances
$$m_n \cong x_n \kappa \exp(-\kappa \pi r_c)$$

RS1 model (Randall & Sundrum, 1999)

Graviton spectrum - heavy resonances, with the lightest one above 1 TeV

II.
$$\mathbf{C} = \kappa \pi \mathbf{r}_{\mathbf{c}}$$
 $\sigma(0) = -\kappa \pi \mathbf{r}_{\mathbf{c}}, \quad \sigma(\pi \mathbf{r}) = 0$

$$M_{\rm Pl}^2 \cong \frac{M_5^3}{\kappa} \exp(2\pi\kappa r_c)$$

 $\kappa \ll M_5$ $\kappa r_c \approx 9.5$ for $M_5 = 1 \text{ TeV}, \kappa = 100 \text{ MeV}$

Masses of KK resonances

$$m_n \cong x_n \kappa$$

RSSC model: scenario with small curvature of 5-dimensional space-time

For small *k*, graviton spectrum is (similar to that of the ADD model

(Giudice, 2005 Petrov & A.K., 2005)

RSSC model vs.ADD model

RSSC model is not equivalent to the ADD model with one flat ED of size $R=(\pi\kappa)^{-1}$ up to $\kappa \approx 10^{-18}$ eV

Hierarchy relation for small κ

$$M_{\rm Pl}^2 \cong \frac{M_5^3}{\kappa} \left[\exp(2\pi\kappa r_c) - 1 \right] \xrightarrow{2\pi\kappa r_c <<1} M_5^3 (2\pi r_c)$$

But the inequality $2\pi\kappa r_c \ll 1$ means that

$$\kappa \ll \frac{M_5^3}{M_{\rm Pl}^2} \approx 0.17 \cdot 10^{-18} \left(\frac{M_5}{1 {\rm TeV}}\right)^3 {\rm eV}$$

Virtual Gravitons at the LHC

pp-collisions at LHC mediated by KK graviton exchange in *s*-channel

Processes:
$$pp \rightarrow l^+ l^- (\gamma \gamma, 2jets) + X$$

Matrix element of sub-process

Recall that $m_n \cong z_n \kappa$

$$\sum_{n=1}^{\infty} \frac{1}{z_n^2 - z^2} = \frac{1}{2z} \frac{J_{\nu+1}(z)}{J_{\nu}(z)}, \quad J_{\nu}(z_n) = 0$$

$$S(s) \approx -\frac{1}{4\overline{M}_{5}^{3}\sqrt{s}} \frac{\sin 2A + i \sinh 2\varepsilon}{\cos^{2}A + \sinh^{2}\varepsilon} \quad (A.K, 2006)$$

where
$$A = \frac{\sqrt{s}}{\kappa}, \ \varepsilon = \frac{\eta}{2} \left(\frac{\sqrt{s}}{\overline{M}_5} \right)^3$$

Equivalent Photon Approximation (EPA)

Field of fast charged particle is similar to electromagnetic radiation

(Fermi, 1924; Weizsäcker, 1934; Williams, 1935)

Spectrum of photon emitted by proton (Q² is photon virtuality, E_γ= ξE its energy)

$$\frac{dN}{dE_{\gamma}dQ^2} = \frac{\alpha}{\pi} \frac{1}{E_{\gamma}Q^2} \left[\left(1 - \frac{E_{\gamma}}{E} \right) \left(1 - \frac{Q_{\min}^2}{Q^2} \right) F_E + \frac{E_{\gamma}^2}{2E^2} F_M \right]$$

(Budnev et al.,1975)

$$Q_{\min}^{2} = \frac{m_{p}^{2} E_{\gamma}^{2}}{E(E - E_{\gamma})} \quad F_{E} = \frac{4m_{p}^{2} G_{E}^{2} + Q^{2} G_{M}^{2}}{4m_{p}^{2} + Q^{2}} \quad F_{M} = G_{M}^{2}$$

$$G_{E}^{2} = \frac{G_{M}^{2}}{\mu_{p}^{2}} = \left(1 + \frac{Q^{2}}{Q_{0}^{2}}\right)^{-4} Q_{0}^{2} = 0.71 \,\text{GeV}^{2} \qquad \mu_{p}^{2} = 7.78$$
square of proton magnetic moment

Effective $\gamma\gamma$ **-luminosity**

Cross section for the process $pp \rightarrow p\gamma\gamma p \rightarrow pXp$

$$d\sigma = \int \frac{dL_{\gamma\gamma}}{dW} d\sigma_{\gamma\gamma \to X}(W) dW$$

W = invariant energy of two photons

Effective $\gamma\gamma$ luminosity (in GeV⁻¹) as a function of invariant mass of two photons (forward detector acceptance: 0.0015 (0.1) < ξ < 0.5)

γγ process vs. gluon induced process

Exclusive event requires no extra gluon radiation into final state

Sudakov suppression in QCD cross section leads to enhancement in $\gamma\gamma$ for $M_{\chi} > 150-200$ GeV

γγ process vs. *double-Pomeron exchange*

True (a) and observed (b) p_t² distribution of scattered protons in photo-production (line) and diffraction (filled hystogram) (in arbitrary units)

$$p_t^2 < 0.005 \ GeV^2$$

Diffractive contribution is significantly reduced

Matrix element squared consists of electromagnetic, KK and interference terms

$$|M|^{2} = |M_{\rm em}|^{2} + |M_{KK}|^{2} + |M_{\rm int}|^{2}$$

$$|M_{\rm em}|^2 = -2e^4 \left[\frac{\hat{s} + \hat{t}}{\hat{t}} + \frac{\hat{t}}{\hat{s} + \hat{t}} \right]$$
$$|M_{KK}|^2 = \frac{1}{4} |S(\hat{s})|^2 \left[-\frac{\hat{t}}{8} \left(\hat{s}^3 + 2\hat{t}^3 + 3\hat{t}\hat{s}^2 + 4\hat{t}^2\hat{s} \right) \right]$$

$$|M_{\text{int}}|^{2} = -\frac{1}{4}e^{2} \operatorname{ReS}(\hat{s})(\hat{s}^{2} + 2\hat{t}^{2} + 2\hat{s}\hat{t})$$

$$\hat{s}, \hat{t} \text{ are Mandelstam variables}$$
of sub-process $\gamma\gamma \rightarrow \mu^{+}\mu^{-}$

Differential and total cross sections

Cuts on transverse momenta of final muons and their rapidities:

p_t > 30 GeV, |η|< 2.4

Differential cross section (in fb/GeV) for the process $pp \rightarrow p\gamma\gamma p \rightarrow p\mu^+\mu^-p$ as a function of transverse momenta of final muons p_t

Differential cross section for the process $pp \rightarrow p\gamma\gamma p \rightarrow p\mu^+\mu^-p$ for different values of the curvature parameter κ

> No noticeable dependence on parameter κ

Total cross section as a function of minimal transverse momentum of final muons $p_{t,min}$

$$\sigma(p_t > p_{t,\min}) = \int_{p_{t,\min}} \frac{d\sigma}{dp_t} dp_t$$

Total cross section (in fb) for the process $pp \rightarrow p\gamma\gamma p \rightarrow p\mu^+\mu^-p$ as a function of minimal transverse momentum of final muons $p_{t,min}$ for different values of κ

Total cross section for the process $pp \rightarrow p\gamma\gamma p \rightarrow p\mu^+\mu^-p$ as a function of minimal transverse momentum of final muons $p_{t,min}$ for different values of M_5

Statistical significance $S = \sqrt{2[(N_S + N_B)\ln(1 + N_S / N_B) - N_S]}$

N_s (N_B) - number of signal (background) events

$$S \approx \frac{N_S}{\sqrt{N_B}}, \quad N_S << N_B$$

95% C.L. search limit for 5-dimensional Planck scale M_5 as a function of integrated LHC luminosity with cuts $p_t > 500$ GeV (30 GeV), $|\eta| < 2.4$ imposed

Заключение

- В рамках модели с одной дополнительной размерностью и малой кривизной пространства-времени изучено рождение пары мюонов на БАК в процессе, индуцированном фотонами.
- Обобщенное решение для метрики в рассмотренной модели:
 - симметрично относительно обеих бран;
 - имеет на них правильные скачки;
 - совместимо с симметриями орбифолда;
 - зависит от константы.

Заключение (продолжение)

- Начальные үү-состояния естественно приводят к эксклюзивному рождению с «неповреждёнными» протонами на БАК.
- Нами вычислены дифференциальное и полное сечения процесса pp → рүүр → рµ⁺µ⁻р при энергии 14 ТэВ.
- С достоверностью 95% оценены значения
 5-ти мерной массы Планка М₅, доступные для обнаружения на БАК в данном процессе (например, М₅ =1-1.2 ТэВ для L=1000 фб⁻¹).
- Результат не зависит от другого параметра модели к, определяющего кривизну пространства-времени, при условии к << М₅.

Спасибо за внимание!

Back-up slides

n	Obs. limit [TeV]	Exp. limit [TeV]
3	2.85	3.32
4	2.86	3.29
5	2.88	3.28
6	2.90	3.28

95% C.L. expected and observed lower limits on D-dimensional Planck scale M_D
(D=4+n) as a function of number of extra dimensions n in the ADD model (CMS, 13 TeV, 35.9 fb⁻¹)

(CMS Collaboration, arXiv:1810.00196)

Strings needs extra dimensions (EDs) Superstrings: D= 10 (6 EDs must be compactified)

World sheets of open (left) and closed (right) strings propagating in the space-time

Propagation of strings in extra dimensions

Six internal compact dimensions: (p-3) longitudinal, n = (9-p) transverse

in the bulk

with ends at $x_{\top} = const$ for different windings

- string scale
- string coupling
- Planck scale
- gauge coupling

$$M_{S} = l_{S}^{-1}$$
$$\lambda_{S}$$
$$M_{Pl} = l_{Pl}^{-1}$$

string tension $\alpha' = M_s^{-2}$

6 internal compact dimensions: (p-3) longitudinal , n = (9-p) transverse

Ten-dimensional action

$$S = \int_{bulk} d^{10}x \frac{1}{\lambda_{S}^{2}} l_{S}^{-8} \mathsf{R} + \int_{brane} d^{p+1}x \frac{1}{\lambda_{S}} l_{S}^{3-p} \mathsf{F}^{2}$$

Upon compactification of EDs:

$$\frac{1}{l_{\rm Pl}^2} = \frac{V_L V_T}{\lambda_S^2 l_S^8} \qquad \frac{1}{g^2} = \frac{V_L}{\lambda_S l_S^{p-3}}$$

D-dimensional Planck scale (D=4+n)

$$M_D^{2+n} = M_S^{2+4} / (g^4 V_L l_s^{3-p})$$

Hierarchy relation
$$M_{\rm Pl}^2 = M_D^{2+n} R_T^n$$

Explicit account of periodicity and Z₂-symmetry

Solution for the warp function in variable $x = y/r_c$ (A.K., 2015)

$$\sigma(y) = \frac{\kappa r_c}{2} \left[\left| \operatorname{Arccos}(\cos x) \right| - \left| \operatorname{Arccos}(\cos x) - \pi \right| \right] + \frac{\pi \kappa r_c}{2} - C$$

Arccos(z) is principal value of inverse cosine

$$0 \le \operatorname{Arccos}(z) \le \pi, -1 \le z \le 1$$

Arccos(cos x) = $\begin{cases} x - 2n\pi, & 2n\pi \le x \le (2n+1)\pi \\ -x + 2(n+1)\pi, & (2n+1)\pi \le x \le 2(n+1)\pi \end{cases}$

(see, for instance, Gradshteyn & Ryzhik)

In particular, $\sigma(y) = \kappa y$ for $0 \le y \le \pi r_c$

Orbifold symmetries:

 $\sigma(y + 2\pi r_c) = \sigma(y) \quad \text{(periodicity)}$ $\sigma(-y) = \sigma(y) \quad (\mathbf{Z}_2 \text{ symmetry})$

1-st derivative of \sigma(y): $(y \neq \pi nr_c, n = 0, \pm 1, \pm 2, ...)$

$$\sigma'(y) = \kappa \operatorname{sign}(\operatorname{sin}(x))$$
 $\sigma'(-y) = -\sigma'(y)$

2-nd derivative of σ(y):

$$\sigma''(y) = \frac{\kappa}{r_c} \sum_{n=-\infty}^{\infty} \left[\delta(x + 2\pi n) - \delta(x - \pi + 2\pi n) \right]$$

Orbifold symmetries:

$$\sigma(y + 2\pi r_c) = \sigma(y) \quad \text{(periodicity)}$$
$$\sigma(-y) = \sigma(y) \quad \text{(Z}_2 \text{ symmetry)}$$

1-st derivative of \sigma(y): $(y \neq \pi nr_c, n = 0, \pm 1, \pm 2, ...)$

$$\sigma'(y) = \kappa \operatorname{sign}[\sin(y/\mathfrak{r})]$$
$$\sigma'(-y) = -\sigma'(y)$$

2-nd derivative of σ **(y)**:

$$\sigma''(y) = \kappa \sum_{n=-\infty}^{\infty} \left[\delta(y + 2\pi n r_c) - \delta(y - \pi r_c + 2\pi n r_c) \right]$$
$$\sigma''(-y) = \sigma''(y)$$

III.
$$C = \kappa \pi r_c / 2$$
 $\sigma(0) = -\sigma(\pi r_c) = \kappa \pi r_c / 2$ "symmetric"
scheme
 $M_{Pl}^2 \cong \frac{2M_5^3}{\kappa} \sinh(2\pi\kappa r_c)$

Masses of gravitons $m_n \cong x_n \kappa \exp(-\kappa \pi r_c/2)$

Let
$$M_5 = 2 \cdot 10^9 \,\text{GeV}, \,\kappa = 10^4 \,\text{GeV}$$

$$\longrightarrow m_n \cong 3.7 x_n (\text{MeV})$$
 (A.K., 2015)

Almost continuous spectrum of KK gravitons $0.0015 < \xi < 0.5$

κ = 0.1 GeV

κ = 1 GeV

Dependence of differential cross section for the process pp \rightarrow pyyp \rightarrow pµ⁺µ⁻p on curvature parameter **k**