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QCD at finite temperature and nonzero chemical potential

QCD at nonzero temperature
and baryon chemical potential
plays a fundamental role in
many different physical systems.
(QCD at extreme conditions)

neutron stars
heavy ion collision
experiments
Early Universe



Methods of dealing with QCD

Methods of dealing with QCD
First principle calcaltion – lattice Monte Carlo simulations,
LQCD

Effective models
Nambu–Jona-Lasinio model NJL



lattice QCD at non-zero baryon chemical potential µB

Lattice QCD
non-zero baryon chemical potential µB

sign problem — complex determinant

(Det(D(µ)))† = Det(D(−µ†))



Methods of dealing with QCD

Methods of dealing with QCD

First principle calcultion –
lattice Monte Carlo
simulations, LQCD

Effective models
Nambu–Jona-Lasinio model

NJL



NJL model

NJL model can be considered as effective field theory for QCD.

the model is nonrenormalizable
Valid up to E < Λ ≈ 1 GeV

Parameters G , Λ, m0

dof– quarks
no gluons only four-fermion interaction

attractive feature — dynamical CSB
the main drawback – lack of confinement (PNJL)

Relative simplicity allow to consider hot and dense QCD in the
framework of NJL model and explore the QCD phase structure
(diagram).
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chiral symmetry breaking

the QCD vacuum has non-trivial structure due to
non-perturbative interactions among quarks and gluons

lattice simulations ⇒ condensation of quark and anti-quark
pairs

〈q̄q〉 6= 0, 〈ūu〉 = 〈d̄d〉 ≈ (−250MeV )3



Nambu–Jona-Lasinio model

Nambu–Jona-Lasinio model

L = q̄γν i∂νq +
G

Nc

[
(q̄q)2 + (q̄iγ5q)2

]
q → e iγ5αq

continuous symmetry

L̃ = q̄
[
γρi∂ρ − σ − iγ5π

]
q − Nc

4G

[
σ2 + π2

]
.

Chiral symmetry breaking
1/Nc expansion, leading order

〈q̄q〉 6= 0

〈σ〉 6= 0 −→ L̃ = q̄
[
γρi∂ρ − 〈σ〉

]
q



Different types of chemical potentials: dense matter with
isotopic imbalance

Baryon chemical potential µB

Allow to consider systems with non-zero baryon densities.

µB
3
q̄γ0q = µq̄γ0q,

Isotopic chemical potential µI

Allow to consider systems with isotopic imbalance.

nI = nu − nd ←→ µI = µu − µd

The corresponding term in the Lagrangian is µI
2 q̄γ

0τ3q
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QCD phase diagram with isotopic imbalance

neutron stars, heavy ion collisions have isotopic imbalance



Different types of chemical potentials: chiral imbalance

chiral (axial) chemical potential

Allow to consider systems with chiral imbalance (difference between
between densities of left-handed and right-handed quarks).

n5 = nR − nL ←→ µ5 = µR − µL

The corresponding term in the Lagrangian is

µ5q̄γ
0γ5q



Different types of chemical potentials: chiral imbalance

chiral (axial) isotopic chemical potential

Allow to consider systems with chiral isospin imbalance

µI5 = µu5 − µd5

so the corresponding density is

nI5 = nu5 − nd5

nI5 ←→ µI5

Term in the Lagrangian — µI5
2 q̄τ3γ

0γ5q

If one has all four chemical potential, one can consider different
densities nuL, ndL, nuR and ndR



Chiral magnetic effect

~J = cµ5 ~B, c =
e2

2π2

A. Vilenkin, PhysRevD.22.3080,
K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D
78 (2008) 074033 [arXiv:0808.3382 [hep-ph]].



Chiral separation effect

Chiral imbalance could appear in compact stars

~J5 = cµ~B, c =
e2

2π2

there is current and there is n5 and nI5



Model and its Lagrangian

We consider a NJL model, which describes dense quark matter with
two massless quark flavors (u and d quarks).

L = q̄
[
γν i∂ν +

µB
3
γ0 +

µI
2
τ3γ

0 +
µI5
2
τ3γ

0γ5 + µ5γ
0γ5

]
q+

G

Nc

[
(q̄q)2 + (q̄iγ5~τq)2

]
q is the flavor doublet, q = (qu, qd)T , where qu and qd are
four-component Dirac spinors as well as color Nc -plets;
τk (k = 1, 2, 3) are Pauli matrices.



Homogeneous case

Homogeneous case



Equivalent Lagrangian

To find the thermodynamic potential we use a semi-bosonized
version of the Lagrangian

L̃ = q̄
[
γρi∂ρ+µγ0+ντ3γ

0+ν5τ3γ
1−σ−iγ5πaτa

]
q−Nc

4G

[
σσ+πaπa

]
.

σ(x) = −2 G

Nc
(q̄q); πa(x) = −2 G

Nc
(q̄iγ5τaq).

Condansates ansatz 〈σ(x)〉 and 〈πa(x)〉 do not depend on
spacetime coordinates x ,

〈σ(x)〉 = M, 〈π1(x)〉 = ∆, 〈π2(x)〉 = 0, 〈π3(x)〉 = 0. (1)

where M and ∆ are already constant quantities.



thermodynamic potential

the thermodynamic potential can be obtained in the large Nc limit

Ω(M,∆)

Projections of the TDP on the M and ∆ axes

No mixed phase (M 6= 0,∆ 6= 0)

it is enough to study the projections of the TDP on the M and ∆

projection of the TDP on the M axis F1(M) ≡ Ω(M,∆ = 0)

projection of the TDP on the ∆ axis F2(∆) ≡ Ω(M = 0,∆)



Dualities

The TDP (phase daigram) is invariant

Interchange of condensates

matter content

Ω(C1,C2, µ1, µ2)

Ω(C1,C2, µ1, µ2) = Ω(C2,C1, µ2, µ1)



Dualities of the TDP

The TDP is invariant with respect to the so-called duality
transformations (dualities)
1) The main duality

D : M ←→ ∆, ν ←→ ν5

ν ←→ ν5 and PC ←→ CSB

2) Duality in the CSB phenomenon

F1(M) is invariant under DM : ν5 ↔ µ5

3) Duality in the PC phenomenon

F2(∆) is invariant under D∆ : ν ↔ µ5

PC phenomenon breaks DM and CSB phenomenon D∆ duality



Dualities in different approaches

Large Nc orbifold equivalences connect gauge theories with
different gauge groups and matter content in the large Nc

limit.
M. Hanada and N. Yamamoto,
JHEP 1202 (2012) 138, arXiv:1103.5480 [hep-ph],
PoS LATTICE 2011 (2011), arXiv:1111.3391 [hep-lat]



Dualities in large Nc orbifold equivalences

two gauge theories with gauge groups G1 and G2 with µ1 and µ2

Duality
G1 ←→ G2, µ1 ←→ µ2

G2 is sign problem free

G1 has sign problem, can not be studied on lattice



Dualities in large Nc limit of NJL model

Ω(C1,C2, µ1, µ2)

Duality
C1 ←→ C2,
µ1 ←→ µ2

QCD with µ1 —- sign problem free,
and with µ2 has sign problem, can not be studied on lattice



Inhomogeneous case

Inhomogeneous case



In vacuum the quantities 〈σ(x)〉 and 〈πa(x)〉 do not depend on
space coordinate x .

in a dense medium the ground state expectation values of bosonic
fields might depend on spatial coordinates

CDW ansatz for CSB
the single-plane-wave LOFF ansatz for PC

〈σ(x)〉 = M cos(2kx1), 〈π3(x)〉 = M sin(2kx1),

〈π1(x)〉 = ∆ cos(2k ′x1), 〈π2(x)〉 = ∆ sin(2k ′x1)

equivalently
〈π±(x)〉 = ∆e±2k ′x1



Duality

Duality in homogeneous case has been shown

D : M ←→ ∆, ν ←→ ν5

In (1+1) case duality was shown as well



Duality

Duality in inhomogeneous case is shown

DI : M ←→ ∆, ν ←→ ν5, k ←→ k ′. (2)



Duality

It is interesting feature

Duality is not just accidental property

but deep property of the phase structure

not automatic



Two other dualities

Two other dualities are valid only in homogeneous case

Duality in the CSB phenomenon DM : ν5 ↔ µ5

Duality in the PC phenomenon

D∆ : ν ↔ µ5



Physical point

Physical point

non-zero current quark masses



Physical point

L = q̄
[
γν i∂ν + µiΓ

i −m0

]
q +

G

Nc

[
(q̄q)2 + (q̄iγ5~τq)2

]

current quark mass m0 6= 0



Physical point

Anzats is

〈σ(x)〉 = M cos(2kx1)−m0, 〈π3(x)〉 = M sin(2kx1)

〈π1(x)〉 = ∆ cos(2k ′x1), 〈π2(x)〉 = ∆ sin(2k ′x1)

Andersen, Adhikari 2016 (1+1) dim
Phys. Rev. D 95, 054020 (2017)

Ω(M,∆, k , k ′) =
M2 − 2m0Mδk,0 + m2

0 + ∆2

4G
+ i

∫
d4p

(2π)4 lnD(p),



Duality and the physical point

Duality in the physical point is approximate

in the leading order of large N approximation

but in inhomogeneous case it is exact



The Strength of Duality

The Strength of Duality



Isospin asymmetric dense matter

Non-zero baryon density µB 6= 0

Non-zero isospin density µI 6= 0



Inhomogeneous phases for dense matter

homogeneous phases — vacuum µB = 0

Inhomogeneous phases — µB 6= 0

There have been found a lot of evidence of
inhomogeneous phases at non-zero bayon density



(µB/3,T ) phase diagram
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Figure: (µB/3,T ) phase diagram with inhomogeneous CSB phase



Isospin asymmetric dense matter

Non-zero baryon and isospin density µB 6= 0, µI 6= 0

CSB phase — inhomogeneous (CDW anzatz)

PC phase — homogeneous

Buballa, Nowakowski, Carignano, Wambach



Isospin asymmetric dense matter
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Figure: Phase diagram in the µ̄− T plane for three different values of µI .
The shaded areas indicate the regions where a CDW-like modulation of
the condensates is favored over a homogeneous solution.
Nowakowski, Buballa, Carignano, Wambach arXiv:1506.04260 [hep-ph]



Physical point

It was all done in the chiral limit

What about physical point



Physical point
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Figure: Same plot for m = 5 MeV and m = 10 MeV.
D. Nickel Phys.Rev.D80:074025,2009



Isospin asymmetric dense matter

Non-zero baryon and isospin density µB 6= 0, µI 6= 0

CSB phase — homogeneous

PC phase — inhomogeneous

Cheng-fu Mu, Lian-yi He, and Yu-xin Liu



Isospin asymmetric dense matter

In the scenario of color superconductivity in dense quark
matter, the presence of large strange quark mass or isospin
chemical potential (equal to the electron chemical poten-
tial) due to �-equilibrium naturally serves as a mismatch
between the pairing quark species and there is no complex
orbit effect since the mismatch is between different quark
flavors [20]. The effect of mismatched Fermi surfaces on
the ground state of dense quark matter has been investi-
gated in many works [20–22]. However, most of them
focus on the weak coupling case. In the scenario of pion
superfluidity at finite isospin density, the baryon chemical
potential plays naturally the role of mismatch [4,9,23]. The
phase structure in the�I ��B plane can be very rich since
the system undergoes a BEC-BCS crossover when the
isospin chemical potential increases.

The effect of Zeeman splitting or population imbalance
on the BEC-BCS crossover has been widely investigated in
the cold atom scenario in recent years [24–29]. Theoretical
works predict a uniform gapless superfluid phase in the
strong coupling (BEC) limit and an inhomogeneous LOFF
phase in the weak coupling region [25–28]. However, what
occurs in the crossover region is not quite clear. So far the
observation of phase separation in cold atom experiments
[24] supports the fact that the superfluid phase undergoes a
first-order phase transition into the normal phase around
the unitary limit and no exotic pairing states are observed
there. There also arises a uniform gapless phase, which is
called the Sarma phase [30], in the weak coupling region.
However, it was found many years ago that the Sarma state
corresponds to the maximum of the grand potential and
hence is unstable (Sarma instability) [30]. Such a uniform
gapless phase promoted great interest due to the work of
interior gap superfluidity [31] or breached pairing super-
fluidity [32]. However, it is found that the stability of such a
phase demands special conditions [32]. The appearance of
a uniform gapless phase was also predicted in two-flavor
dense quark matter, where the Sarma instability can
be removed via the charge neutrality constraint [21].
However, it was soon found that the gapless phase suffers
from other types of instability, such as imaginary Meissner
mass [22] or negative superfluid density [33]. The lesson is
that the constraints like charge neutrality in quark matter
and fixing particle numbers in cold atoms cannot essen-
tially stabilize the phase which corresponds to the maxi-
mum of the grand potential [32,34]. To find the real ground
state, one should first study the grand canonical phase
diagram with all possible bulk phases with fixed chemical
potentials. The bulk phase is stable only when it is built at
the global minimum of the grand potential. However, it is
not easy to do this, since we may miss some bulk phases in
our ansatz and then the analysis is probably not completed.

To shed light on the complete phase diagram of the
quark matter at finite isospin and baryon chemical poten-
tials, we investigate the�I ��B phase diagram in the two-
flavor Nambu–Jona-Lasinio model in this paper. The NJL

model is a suitable model to study BEC-BCS crossover
phenomenon at finite isospin density since pions are
treated as composite bound objects in the vacuum
[35,36]. In our analysis, we include all known bulk phases:
uniform superfluid phase, inhomogeneous LOFF phase and
normal phase. We also consider possible chiral phase
transition [36,37] and quantum phase transition between
superfluid phases with different Fermi surface topology
[38]. The phase diagram we obtained is shown in Fig. 1.
We find that a gapless pion condensed phase (GPC)
appears near the quadruple point ð�I; �BÞ ¼ ðm�;MN �
1:5m�Þ. The gapless phase ceases to exist near the BEC-
BCS crossover, namely, it exists only in the BEC region.

0 0.4 0.8 1.2 1.6 2

I m

0.7

0.8

0.9

1

1.1

B
M

N

V

I II

III

3 4 5 6 7 8 9

I m

0.5

0.6

0.7

0.8

0.9

1

B
M

N

V VI

IV

FIG. 1 (color online). Survey of our presently obtained phase
diagram of quark matter in terms of the isospin chemical
potential (�I) and the baryon chemical potential (�B) in the
two-flavor Nambu–Jona-Lasinio model. The �I and �B are in
unit of pion mass, nucleon mass, respectively. Solid, dashed, and
dash-dotted lines stand for first-, second-, and third-order phase
transitions, respectively. The Roman numbers denote different
phases: I—vacuum, II—pion superfluid, III—gapless pion con-
densate, IV—LOFF phase, V—normal isospin asymmetric
quark matte, and VI—normal quark matter in the presence of
a Fermi surface for antiquarks. The dotted lines represent the
BEC-BCS crossover. The BEC (BCS) region is located on the
left (right) of the dotted line in the upper (lower) panel, respec-
tively. Between the BEC and BCS domains the superfluid matter
is in a crossover state.
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µI > 3mπ

Figure: Phase diagram in the µ− µI plane. IV is ICPC phase; left for
µI < 2mπ and right for µI > 3mπ.
Cheng-fu Mu, Lian-yi He, and Yu-xin Liu Phys. Rev. D 82, 056006 2010



Isospin asymmetric dense matter

Non-zero baryon and isospin density µB 6= 0, µI 6= 0

CSB phase — inhomogeneous

PC phase — inhomogeneous

Let us combine the obtained results to get full (µ, µI)
phase diagram



Isospin asymmetric dense matter

It is possible

ICSB and ICPC phases do not intersect almost
anywhere



schematic (ν, µ)-phase diagram

ν, MeV

μ, GeV

Figure: Combined schematic (ν, µ)-phase diagram.



to get (ν5, µ)-phase diagram, one just need to take the (ν, µ)-phase
diagram and make the following transformations:

(i) exchange axis ν to the axis ν5,

(ii) rename the phases ICSB ↔ ICPC, CSB ↔ CPC, and NQM
phase stays intact here



ν, MeV

μ, GeV

ν5, MeV

μ, GeV

Figure: (ν, µ)-phase diagram Figure: (ν5, µ)-phase diagram

They are dualy conjugated to each other



Conclusions

Showed that there is duality in inhomogeneous case
-Duality is not just accidental property but deep property
of the phase structure

- Two other dualities is valid only in homogeneous case

- Duality is approximate in the physical point, exact for
inhomogeneous phases

Full phase diagram (µB , µI )
dense µB 6= 0 and isotopically asymmetric µI 6= 0 quark matter

Full phase diagram (µB , ν5)
dense µB 6= 0 and chirally asymmetric µI5 6= 0 quark matter



Conclusions

To get (µB , ν5) phase diagram only duality was used
without calculations

Duality is not just entertaining mathematical property but
an instrument with very high predictivity power

(µB , ν5) phase diagram is quite rich and contains various
inhomogeneous phases
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