Процессы рождения пар фотонов и мюонов на коллайдерах LHC и CLIC, индуцированные фотонами, в моделях с дополнительными размерностями

А.В. Киселев

Отдел теоретической физики НИЦ «Курчатовский институт» - ИФВЭ

(совместно c: Salih Inan, Cumhuriyet University, Turkey)

Phys. Rev. D 100 (2019) 095004 (часть I) Направлено в печать (часть II)

Семинар ОТФ, 14 января 2020 года

План рассказа (часть I)

- Эксклюзивное рождение пары фотонов на БАК, индуцированное фотонами.
- Модель Рандалл-Сундрума (РС) с одной дополнительной пространственной размерностью и ее обобщение.
- □ Сечения рассеяния для процесса pp → рүүр → р'үүр' при энергии 14 ТэВ в модели РС с малой кривизной пространства-времени.
- Ограничения на 5-мерную гравитационную фундаментальную константу.

Photon-induced diphoton production at the LHC

Schematic diagram for the reaction $pp \rightarrow p \gamma \gamma p \rightarrow p' \gamma \gamma p'$

The goal is to estimate BSM effects in such a process which proceeds via $\gamma\gamma \rightarrow \gamma\gamma$ scattering

Light-by-light scattering $(\gamma\gamma \rightarrow \gamma\gamma)$ is a quantum mechanical process forbidden in the classical theory of electrodynamics.

In QED this scattering proceeds via virtual one-loop diagrams Involving fermions which is an $O(\alpha^4 \approx 3 \cdot 10^{-9})$ process, making it challenging to test it experimentally.

Elastic light-by-light scattering remains unobserved: even ultra-intense laser experiments are not yet powerful enough to probe this phenomenon.

 $\gamma\gamma \rightarrow \gamma\gamma$ process can be measured in heavy ion collision events, with impact parameters lager than twice radius of nuclei, in which strong interaction does not play a role. For lead nucleus (Z=82) EM field is up to 10²⁵ V m⁻¹.

Experimental studies of photon-induced reactions at LHC

First observation of γγ-induced diphoton production – in high energy ultraperipheral heavy ions collisions (ATLAS Collaboration, Nature Phys. 13, 852 (2017)).

480 fb⁻¹ 5 TeV c.m.s. N-N energy E_T > 3 GeV |η| < 2.4

Recently, CMS Collaboration reported the same process (Nucl. Phys. A 982, 791 (2019)).

Dominant backgrounds are:

- QED exclusive electron-positron production with
 e+(e-) misidentified as photons;

- gluon central exclusive production (CEP) of a pair of photons.

Diphoton invariant mass distribution (left) Diphoton p_t distributions (right)

Forward detectors at the LHC can detect intact outgoing protons in interval

$$\xi_{\min} < \xi < \xi_{\max}$$

where $\boldsymbol{\xi}$ is momentum fraction loss of the proton

Acceptance range:

ATLAS Forward Physics Collaboration (AFP)

CMS-TOTEM Precision Proton Spectrometer (CT-PPS) $0.015 < \xi < 0.15$

Extra (5-th) dimension of the space-time

Маргарита:

- …более всего меня поражает, где все это помещается.

Коровьев:

- Самое несложное из всего! Тем, кто хорошо знаком с пятым измерением, ничего не стоит раздвинуть помещение до желательных пределов. Скажу вам более, уважаемая госпожа, до черт знает каких пределов!

М.А. Булгаков. Мастер и Маргарита. Глава 22. При свечах.

Randall-Sundrum scenario

(Randall & Sundrum, 1999)

Background metric (y is extra coordinate)

two (1+3)-dimensional branes

5-dimensional action $S = S_g + S_1 + S_2$

$$S_g = \int d^4x \int dy \sqrt{G} \left(2M_5^3 R^{(5)} - \Lambda \right) \text{ (gravity term)}$$

$$S_{1(2)} = \int d^4 x \sqrt{g_{1(2)}} \left(L_{1(2)} - \Lambda_{1(2)} \right)$$
 (brane terms)

Einstein-Hilbert's equations:

$$\sigma'^{2}(y) = -\frac{\Lambda}{24M_{5}^{3}}$$
$$\sigma''(y) = \frac{1}{12M_{5}^{3}} [\Lambda_{1}\delta(y) + \Lambda_{2}\delta(\pi r_{c} - y)]$$

Generalized RS-like solution

Two equivalent solutions related to different branes

Generalized solution:
$$\sigma(y) = \frac{1}{2} [\sigma_0(y) + \sigma_{\pi}(y)] - C$$

with fine tuning

$$\Lambda = -24M_5^3\kappa^2, \quad \Lambda_1 = -\Lambda_2 = 12M_5^3\kappa$$

**1-st derivative of
$$\sigma(\mathbf{y})$$
:** $\sigma'(y) = \frac{\kappa}{2} [\varepsilon(y) - \varepsilon(y - \pi r_c)]$

2-nd derivative of \sigma(y): $\sigma''(y) = \kappa [\delta(y) - \delta(y - \pi r_c)]$

$$\sigma(y + 2\pi r_c) = \sigma(y) \quad \text{(periodicity)}$$

$$\sigma(-y) = \sigma(y) \quad \text{(Z, symmetry)}$$

Hierarchy relation
$$M_{\text{Pl}}^2 = \frac{M_5^3}{\kappa} \exp(2\mathbf{C})$$

Interaction Lagrangian (massive gravitons only)

$$L(x) = -\frac{1}{\Lambda_{\pi}} \sum_{n=1}^{\infty} h_{\mu\nu}^{(n)}(x) T_{\alpha\beta}(x) \eta^{\mu\alpha} \eta^{\nu\beta}$$

Masses of KK gravitons (x_n are zeros of J₁(x))

$$m_n = x_n M_{\rm Pl} \exp(-\pi \kappa r_c) \left(\frac{\kappa}{M_5}\right)^{3/2}$$

Masses of KK gravitons m_{n} and coupling Λ_{π} depend on constant C via M_{5} and κ

Different values of **C** result in quite diverse physical models

Two interesting physical scenarios

I. C = 0
$$\sigma(0) = 0, \quad \sigma(\pi r_c) = \kappa \pi r_c$$

Masses of KK resonances
$$m_n \cong x_n \kappa \exp(-\kappa \pi r_c)$$

RS1 model (Randall & Sundrum, 1999)

Graviton spectrum - heavy resonances, with the lightest one above 1 TeV

II.
$$\mathbf{C} = \kappa \pi \mathbf{r}_{\mathbf{c}}$$
 $\sigma(0) = -\kappa \pi \mathbf{r}_{\mathbf{c}}, \quad \sigma(\pi \mathbf{r}) = 0$

$$M_{\rm Pl}^2 \cong \frac{M_5^3}{\kappa} \exp(2\pi\kappa r_c)$$

 $\kappa \ll M_5$ $\kappa r_c \approx 9.5$ for $M_5 = 1 \text{ TeV}, \kappa = 100 \text{ MeV}$

Masses of KK resonances

$$m_n \cong x_n \kappa$$

RSSC model: scenario with small curvature of 5-dimensional space-time

For small *k*, graviton spectrum is (similar to that of the ADD model

(Giudice, 2005 Petrov & A.K., 2005)

Virtual Gravitons at the LHC

Light-by-light collision at LHC is mediated by KK graviton exchanges in *s-*, *t-* and *u-*channels

Processes:
$$pp \rightarrow \gamma \gamma (l^+ l^-, 2jets) + X$$

Matrix element of sub-process

Equivalent Photon Approximation (EPA)

Field of fast charged particle is treated as a beam of quasi-real photons with a small virtuality

(Fermi, 1924; Weizsäcker, 1934; Williams, 1935)

Spectrum of photon emitted by proton (Q^2 is photon virtuality, $E_y = \xi E$ is its energy)

$$\frac{dN}{dE_{\gamma}dQ^2} = \frac{\alpha}{\pi} \frac{1}{E_{\gamma}Q^2} \left[\left(1 - \frac{E_{\gamma}}{E} \right) \left(1 - \frac{Q_{\min}^2}{Q^2} \right) F_E + \frac{E_{\gamma}^2}{2E^2} F_M \right]$$

(Budnev et al., 1975)

$$Q_{\min}^{2} = \frac{m_{p}^{2} E_{\gamma}^{2}}{E(E - E_{\gamma})} \quad F_{E} = \frac{4m_{p}^{2} G_{E}^{2} + Q^{2} G_{M}^{2}}{4m_{p}^{2} + Q^{2}} \quad F_{M} = G_{M}^{2}$$

$$G_{E}^{2} = \frac{G_{M}^{2}}{\mu_{p}^{2}} = \left(1 + \frac{Q^{2}}{Q_{0}^{2}}\right)^{-4} Q_{0}^{2} = 0.71 \,\text{GeV}^{2} \qquad \mu_{p}^{2} = 7.78$$
square of proton magnetic moment

Effective yy-luminosity

Cross section for the process $pp \rightarrow p\gamma\gamma p \rightarrow pXp$

$$d\sigma = \int \frac{dL_{\gamma\gamma}}{dW} d\sigma_{\gamma\gamma \to X}(W) dW$$

W = $2E(\xi_1\xi_2)^{1/2}$ is invariant energy of two photons

Effective γγ-luminosity (in GeV⁻¹) as a function of invariant mass of two photons and forward detector acceptance ξ

Integrated cross sections of different exclusive diphoton processes with intact protons at the 13 TeV LHC as a function of minimum diphoton mass

yy process vs. gluon induced process

Exclusive event requires no extra gluon radiation into final state

Sudakov suppression in QCD cross section leads to enhancement in $\gamma\gamma$ for M_{$\gamma\gamma$} > 150-200 GeV

From T, P invariance and Bose statistics:

$$|M|^{2} = 2|M_{++++}|^{2} + 2|M_{++--}|^{2} + 2|M_{+-+-}|^{2} + 2|M_{+-++-}|^{2} + 8|M_{+++--}|^{2}$$

Sum of electroweak, KK and interference terms:

$$|M|^{2} = |M_{ew}|^{2} + |M_{KK}|^{2} + |M_{int}|^{2}$$

$$\begin{split} \left| M_{KK} \right|^2 &= \frac{1}{8} \left\{ \left| S(\hat{s}) \right|^2 (\hat{t}^4 + \hat{u}^4) + \left| S(\hat{t}) \right|^2 (\hat{s}^4 + \hat{u}^4) + \left| S(\hat{u}) \right|^2 (\hat{s}^4 + \hat{t}^4) \right\} \\ &+ \frac{1}{8} \left\{ \left| S^*(\hat{s}) S(\hat{t}) + S(\hat{s}) S^*(\hat{t}) \right| \hat{u}^4 + \left| S^*(\hat{s}) S(\hat{u}) + S(\hat{s}) S^*(\hat{u}) \right| \hat{t}^4 \right\} \\ &+ \frac{1}{8} \left\{ S^*(\hat{t}) S(\hat{u}) + S(\hat{t}) S^*(\hat{u}) \right| \hat{s}^4 \right\} \end{split}$$

 $\hat{s}, \hat{t}, \hat{u}$ are Mandelstam variables of subprocess $\gamma \gamma \rightarrow \gamma \gamma$

Differential and total cross sections

Cuts on transverse momenta and rapidities of final photons:

p_t > 30 GeV, |η|< 2.5

No noticeable dependence on parameter κ

Differential cross section (in fb/GeV) for the process $pp \rightarrow p \gamma \gamma p \rightarrow p' \gamma \gamma p'$ as a function of transverse momenta of final photons p_t

Total cross section as a function of minimal transverse momentum of final photons $p_{t,min}$

$$\sigma(p_t > p_{t,\min}) = \int_{p_{t,\min}} \frac{d\sigma}{dp_t} dp_t$$

 $0.015 < \xi < 0.15$ $\kappa = 1 \text{ GeV}$

Total cross section for the process $pp \rightarrow p \gamma \gamma p \rightarrow p' \gamma \gamma p'$ as a function $p_{t,min}$ for different values of M_5

95% C.L. search limit for 5-dimensional Planck scale M_5 as a function of integrated LHC luminosity L with cuts $p_t > 500$ GeV, $|\eta| < 2.5$ imposed

План рассказа (часть II)

- Рождение пары мюонов на проектируемом коллайдере CLIC, индуцированное фотонами.
- □ Дифференциальное и полное сечения для процесса e+e- → e+үүe- → e'+µ⁺µ⁻e'- в ряде моделей с дополнительными размерностями.
- Ограничения на многомерные гравитационные константы – аналоги массы Планка.
- Общее заключение

Compact Linear Collider (CLIC)

	Beam energy	Integrated luminosity		
1-st stage	190 GeV	1000 fb⁻¹		
2-nd stage	750 GeV	2500 fb ⁻¹		
3-rd stage	1.5 TeV	5000 fb⁻¹		

Photon-induced dimuon production at the CLIC

Schematic diagram for the reaction $e+e- \rightarrow e+ \gamma\gamma e- \rightarrow e'+ \mu^+\mu^- e'-$

Total cross section for the process $e+e- \rightarrow e+\gamma\gamma e- \rightarrow e'+\mu^+\mu^-e'$ - in the ADD model with the HLZ convention as a function of $p_{t,min}$ for $\sqrt{s} = 3000$ GeV and scale cutoff $M_s = 3.5$ TeV. m_1 = mass of the lightest graviton, $\beta = \kappa/M_{Pl}$

Total cross section for the process $e+e- \rightarrow e+\gamma\gamma e- \rightarrow e'+\mu^+\mu^-e'$ - in the RS model as a function of mass of the lightest KK resonance for $\sqrt{s} = 1500$ GeV and different values of β .

Weak dependence on parameter **K**

Total cross section for the process $e+e- \rightarrow e+\gamma\gamma e- \rightarrow e'+\mu^+\mu^-e'$ - in the RSSC model as a function of $p_{t,min}$ for $\sqrt{s} = 3000$ GeV and different values of M_5 and κ .

d = number of EDs

95% C.L. CLIC search bounds in the ADD model with the HLZ convention for Vs = 1500 GeV and 3000 GeV, p_t > 500 GeV as a function of integrated LHC luminosity L

 m_1 = mass of the lightest graviton, $\beta = \kappa/M_{Pl}$

95% C.L. CLIC exclusion regions for the parameters m_1 , β in the RS model for $\sqrt{s} = 1500$ GeV and 3000 GeV as a function of integrated LHC luminosity L

95% C.L. CLIC search bounds in the RSSC model for vs = 1500 GeV and 3000 GeV, $p_t > 500$ GeV as a function of integrated LHC luminosity L Много говорить не буду, а то опять чего-нибудь скажу (Э8h)

Заключение

- Начальные үү-состояния подпроцессов естественно приводят к эксклюзивному рождению с «неповреждёнными» протонами (электронами) на LHC (CLIC).
- Вычислены дифференциальное и полное сечения процесса pp → рүүр → р'үүр' при энергии 14 ТэВ.
- С достоверностью 95% оценены значения
 5-ти мерной массы Планка М₅, доступные для обнаружения на LHC в данном процессе:
 M₅ = 1.37(1.74) ТэВ для L=300(3000) фб⁻¹.

Заключение (продолжение)

- Данные ограничения не зависят от другого параметра модели к, определяющего кривизну пространства-времени, при условии к << М₅.
- Изучен индуцированный фотонами процесс рождения мюонной пары е+е- → е+үүе- → е'+µ⁺µ⁻е'- на проектируемом коллайдере CLIC.
- Вычислены сечения рассеяния для энергий пучка 750 ГэВ и 1500 ГэВ и интегральных светимостей вплоть до 2500 фб⁻¹ и 5000 фб⁻¹, соответственно.
- Получены ограничения на параметры моделей
 с дополнительными измерениями, которые
 могут быть достигнуты в указанном процессе.

План дальнейшей работы

Вычисление сечений виртуального рождения аксионо-подобных частиц а (ALPs) на коллайдере CLIC в процессе, индуцированном фотонами (е+е- → е+үүе- → е+ а е- → е+үүе-)

Спасибо за внимание!

(вохку волросы есть? Вопросов нет.

Back-up slides

Measured light-by-light cross section (CMS, 2019): $\sigma_{exp} = 122 \pm 46 \text{ (stat)} \pm 29 \text{ (syst)} \pm 4 \text{ (theo)}$

SM prediction (d'Enterria & Sillveria, 2013): $\sigma_{theo} = 138 \pm 14 \text{ nb}$

Experimental studies of photon-induced reactions

Tevatron, CDF Collaboration, 2009: $pp \rightarrow p\gamma\gamma p \rightarrow pl^+l^-p (l = e, \mu)$

LHC (7 TeV), CMS Collaboration, 2012: pp \rightarrow pyyp \rightarrow pl⁺l⁻p (l =e,µ)

LHC (7 TeV), ATLAS Collaboration, 2014: pp \rightarrow pyyp \rightarrow pl⁺l⁻p (l =e,µ)

LHC (8 TeV), ATLAS Collaboration, 2016: pp \rightarrow pyyp \rightarrow pl⁺l⁻p (l =e,µ) First observation of proton-tagging $\gamma\gamma$ collision: LHC (13 TeV), CMS-TOTEM Collaboration, 2018 pp \rightarrow p $\gamma\gamma$ p* \rightarrow pl⁺l⁻p* m(l⁺l)>110 GeV 12 $\mu^+\mu^-$, 8 e⁺e⁻

Семинар ОТФ, Протвино, 9 октября 2018 г.

Photon identification (a) and reconstruction efficiency (b)

Cut / Process	Signal (full)	Signal with (without) f.f (EFT)	Excl.	DPE	DY, di-jet + pile up	$\gamma\gamma$ + pile up
$\begin{array}{l} [0.015 < \xi_{1,2} < 0.15, \\ p_{\mathrm{T1},(2)} > 200, (100) \ \mathrm{GeV}] \end{array}$	65	18 (187)	0.13	0.2	1.6	2968
$m_{\gamma\gamma} > 600 \text{ GeV}$ $[p_{\text{T}2}/p_{\text{T}1} > 0.95,$ $ \Delta\phi > \pi - 0.01]$	64	17 (186)	0.10	0	0.2	1023
	64	17 (186)	0.10	0	0	80.2
$\sqrt{\xi_1 \xi_2 s} = m_{\gamma\gamma} \pm 3\%$	61	16 (175)	0.09	0	0	2.8
$ y_{\gamma\gamma} - y_{pp} < 0.03$	60	12 (169)	0.09	0	0	0

Number of signal events and background events (Fichet et. al, 2015)

Statistical significance

$$S = \sqrt{2[(N_S + N_B)\ln(1 + N_S / N_B) - N_S]}$$

N_s (N_B) - number of signal (background) events

$$S \approx \frac{N_S}{\sqrt{N_B}}, \quad N_S << N_B$$

Overview of CMS EXO results

			CMS		36 fb ⁻¹ (13 TeV)		
	SSM 7'(1)	м	1803.06292 (2/)	45			
	SSM Z'(až)	M	1805.00232 (21)	27			
Lo Lo	$IEV(7' BB(e_{1}) = 10\%$	M	1802 01122 (au)	4.4			
Ba	SSM W((p))	M	1803 11133 (l + Emins)	52			
đe	SSM W(a)	M.	1806 00843 (2)	33			
Sau	SSM W(Tu)	M	$1807 \ 11421 \ (\tau + E^{mins})$	4			
5	$IBSM W_0(N_0), M_H = 0.5M_H$	PAW M	1803 11116 (2/+ 2)	44			
ear	$IBSM W_{\alpha}(\tau N_{\alpha}) M_{\alpha} = 0.5M_{\alpha}$	PO _{Me}	1811 00806 (2++2)	25			
-	Axialuon Coloron $cat9 = 1$	POWR.	1806 00843 (21)	5.5			
	Auguan, coloron, colo = 1	PAC	2000.00040 (2)	0.1			
	scalar LQ (pair prod.), coupling to 1^{st} gen. fermions, $\beta = 1$	Ma	1811.01197 (2e+ 2j)	1.44			
2	scalar LQ (pair prod.), coupling to 1^{st} gen. fermions, $\beta = 0.5$	Mo	1811.01197 (2e + 2j; e + 2j + E ^{mins})	127			
Tar	scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta = 1$	Mo	1808.05082 (2µ + 2j)	1.53			
bo	scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta = 0.5$	Mo	$1808.05082 (2\mu + 2j; \mu + 2j + E_{T}^{mins})$	1.29			
ept	scalar LQ (pair prod.), coupling to 3^{rd} gen. fermions, $\beta = 1$	Mo	1811.00806 (2T + 2j) 1.02				
-	scalar LQ (single prod.), coup. to 3^{rd} gen. ferm., $\beta = 1, \lambda = 1$	Mo	1806.03472 (2r + b) 0.74				
_							
	excited light quark (qg), $\Lambda = m_q^*$	M_{q}	1806.00843 (2 j)	6			
a c	excited light quark $(q\gamma)$, $f_s = f = f' = 1$, $\Lambda = m_q^*$	M _q .	1711.04652 (γ + j)	5.5			
nio	excited b quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$	M₀-	1711.04652 (y + j)	1.8			
a F	excited electron, $f_s = f = f' = 1$, $\Lambda = m_e^*$	Ma	1811.03052 (γ + 2e)	3.9			
	excited muon, $f_s = f = f' = 1$, $\Lambda = m_{\mu}^*$	Mμ·	1811.03052 (γ + 2 μ)	3.8			
us t	quark compositeness ($q\bar{q}$), $\eta_{LL/RR} = 1$	А+ Щля	1803.08030 (2 j)		12.8		
ctic	quark compositeness (ll), η _{LL/RR} = 1	Л+ Щ/ня.	1812.10443 (21)		20		
Con	quark compositeness (qq̃), η _{LL/RR} = -1	Λ _{LL/RR}	1803.08030 (2 j)		17.5		
	quark compositeness (ℓℓ), η _{LL/RR} = −1	Λ _{LL/RR}	1812.10443 (2 <i>t</i>)		31		
			1002 00020 (32)				
\sim \sim	ADD (jj) HLZ, $n_{ED} = 3$	Ms	1803.08030 (2j)		12		
	ADD $(\gamma\gamma, ll)$ HLZ, $n_{ED} = 3$	Ms	1812.10443 (2y , 2 <i>t</i>)	9.1			
	ADD G_{RC} emission, $n = 2$	Mo	$1/12.02345 (\ge 1j + E_T^{-11})$	9.9			
Suc	ADD QBH (jj), $n_{ED} = 6$	М _{овн}	1803.08030 (2 J)	8.2			
Isi	ADD QBH (eµ), $h_{ED} = 6$	Мовн	1802.01122 (eµ)	5.0			
Ē	RS $G_{KX}(qq, gg), k/M_{Pl} = 0.1$	$M_{G_{EE}}$	1806.00843 (2 J)	1.8			
ö	RS $G_{NX}(ll)$, $k/M_{Pl} = 0.1$	MGEE	1803.06292 (21)	4.25			
Ę	RS $G_{KOL}(\gamma\gamma), k/M_{Pl} = 0.1$	MGEE	1809.00327 (2Y)	4.1			
L.L.	RS QBH (jj), $h_{ED} = 1$	Мовн	1803.08030 (2j)	5.9			
	RS QBH $(e\mu)$, $n_{eD} = 1$	М _{овн}	1802.01122 (eµ)	3.0			
	non-rotating BH, $M_D = 4$ TeV, $h_{ED} = 0$	Ман	$1805.00013 (\ge 7)(t, \gamma)$	9.7			
	split-UED, $\mu \ge 4$ TeV	1/R	$1803.11133 (l + E_T^{max})$	2.9			
	(axial-)vector mediator ($\gamma\gamma$), $a_n = 0.25$, $a_{nM} = 1$, $m_x = 1$ GeV	м	1712.02345 (> 1i + E ^{mina})	18			
5	(axial-)vector mediator $(a\bar{a})$, $a_{r} = 0.25$, $a_{rm} = 1$, $m_r = 1$ GeV	M	1806.00843 (2i)	26			
att	scalar mediator $(+t/t\bar{t}), q_{-} = 1, q_{rm} = 1, m_{-} = 1 \text{ GeV}$	M	1901.01553 (0, $1l + \ge 3i + E_{min}^{min}$) 0.29				
×.	pseudoscalar mediator (+ $t/t\bar{t}$), $g_{\alpha} = 1$, $g_{\alpha M} = 1$, $m_{\nu} = 1$ GeV	M	$1901.01553 (0, 1l + \ge 3i + E_{\pi}^{mins}) = 0.3$				
art	scalar mediator (fermion portal), $\lambda_{\mu} = 1, m_{\mu} = 1$ GeV	M.	1712.02345 (≥ 1i + E ^{mina})	14			
	complex sc. med. (dark QCD), $m_{\pi_{0:K}} = 5 \text{ GeV}$, $c\tau_{\chi_{cic}} = 25 \text{ mm}$	Mare	1810.10069 (4 j)	1.54			
Ter .	Type III Seesaw, $B_e = B_\mu = B_\tau$	M _{Sigma}	1708.07962 (≥ 3 <i>t</i>) 0.84				
8	string resonance	Ms	1806.00843 (2 J)	7.7			
			0.1 1	0 10	.0		
mass scale [TeV]							
Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).							

Original Randall-Sundrum solution

(Randall & Sundrum, 1999)

$$\sigma_{\rm RS}(y) = \kappa |y| \quad \Lambda_{\rm RS} = -24M_5^3\kappa^2, \quad (\Lambda_1)_{\rm RS} = -(\Lambda_2)_{\rm RS} = 24M_5^3\kappa$$

$$\sigma'_{\rm RS}(y) = \kappa \varepsilon(y) \qquad \sigma''_{\rm RS}(y) = 2\kappa \delta(y)$$

The RS solution:

- -does not explicitly reproduce the jump on TeV brane (at y=πr_c)
- is not symmetric with respect to both branes (located at y=0 and y=πr_c)
- does not include a constant term

Explicit account of periodicity and Z₂-symmetry

Solution for the warp function in variable $x = y/r_c$ (A.K., 2015)

$$\sigma(y) = \frac{\kappa r_c}{2} \left[\left| \operatorname{Arccos}(\cos x) \right| - \left| \operatorname{Arccos}(\cos x) - \pi \right| \right] + \frac{\pi \kappa r_c}{2} - C$$

Arccos(z) is principal value of inverse cosine

$$0 \le \operatorname{Arccos}(z) \le \pi, -1 \le z \le 1$$

Arccos(cos x) = $\begin{cases} x - 2n\pi, & 2n\pi \le x \le (2n+1)\pi \\ -x + 2(n+1)\pi, & (2n+1)\pi \le x \le 2(n+1)\pi \end{cases}$

(see, for instance, Gradshteyn & Ryzhik)

In particular, $\sigma(y) = \kappa y$ for $0 \le y \le \pi r_c$

Orbifold symmetries:

$$\sigma(y + 2\pi r_c) = \sigma(y) \quad \text{(periodicity)}$$
$$\sigma(-y) = \sigma(y) \quad \text{(Z}_2 \text{ symmetry)}$$

1-st derivative of \sigma(y): $(y \neq \pi nr_c, n = 0, \pm 1, \pm 2, ...)$

$$\sigma'(y) = \kappa \operatorname{sign}[\sin(y/\mathfrak{x})]$$
$$\sigma'(-y) = -\sigma'(y)$$

2-nd derivative of σ **(y)**:

$$\sigma''(y) = \kappa \sum_{n=-\infty}^{\infty} \left[\delta(y + 2\pi n r_c) - \delta(y - \pi r_c + 2\pi n r_c) \right]$$
$$\sigma''(-y) = \sigma''(y)$$

III.
$$C = \kappa \pi r_c / 2$$
 $\sigma(0) = -\sigma(\pi r_c) = \kappa \pi r_c / 2$ "symmetric"
scheme
 $M_{Pl}^2 \cong \frac{2M_5^3}{\kappa} \sinh(2\pi\kappa r_c)$

Masses of gravitons $m_n \cong x_n \kappa \exp(-\kappa \pi r_c/2)$

Let
$$M_5 = 2 \cdot 10^9 \,\text{GeV}, \,\kappa = 10^4 \,\text{GeV}$$

$$\longrightarrow m_n \cong 3.7 x_n (\text{MeV})$$
 (A.K., 2015)

Almost continuous spectrum of KK gravitons

RSSC model vs.ADD model

RSSC model is not equivalent to the ADD model with one flat ED of size $R=(\pi\kappa)^{-1}$ up to $\kappa \approx 10^{-18}$ eV

Hierarchy relation for small κ

$$M_{\rm Pl}^2 \cong \frac{M_5^3}{\kappa} \left[\exp(2\pi\kappa r_c) - 1 \right] \xrightarrow{2\pi\kappa r_c <<1} M_5^3 (2\pi r_c)$$

But the inequality $2\pi\kappa r_c \ll 1$ means that

$$\kappa \ll \frac{M_5^3}{M_{\rm Pl}^2} \approx 0.17 \cdot 10^{-18} \left(\frac{M_5}{1 {\rm TeV}}\right)^3 {\rm eV}$$

Recall that $m_n \cong z_n \kappa$

$$\sum_{n=1}^{\infty} \frac{1}{z_n^2 - z^2} = \frac{1}{2z} \frac{J_{\nu+1}(z)}{J_{\nu}(z)}, \quad J_{\nu}(z_n) = 0$$

$$S(s) \approx -\frac{1}{4\overline{M}_{5}^{3}\sqrt{s}} \frac{\sin 2A + i \sinh 2\varepsilon}{\cos^{2}A + \sinh^{2}\varepsilon} \quad (A.K, 2006)$$

where
$$A = \frac{\sqrt{s}}{\kappa}, \ \varepsilon = \frac{\eta}{2} \left(\frac{\sqrt{s}}{\overline{M}_5} \right)^3$$

Margarita:

`...most of all I'm struck that there's room for all this.' Koroviev:

`The most uncomplicated thing of all! For someone well acquainted with the fifth dimension, it costs nothing to expand space to the desired proportions. I'll say more, respected lady - to devil knows what proportions! M. Bulgakov. The Master and Margarita. Chapter 22. By Candlelight.