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History and terminology

History and terminology

Bimetric theory, N. Rosen (1940)

f-g gravity, Isham, Salam, Strathdee (1971)

Strong gravitation, Zumino (1971)

Bigravity, Damour, Kogan (2002)

Bimetric gravity, Hassan, R. Rosen (2011)

ADM Hamiltonian formalism, Arnowitt, Deser, Misner (1962)

Kucha�r's Hamiltonian formalism, Kucha�r (1977)
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History and terminology

Problems of old massive gravity

Boulware-Deser ghost (negative kinetic energy)

Causality problems (two di�erent light cones)

Nonperturbative solutions for small distances (Wainstein radius)

No Hamiltonian constraint (arbitrary initial conditions)

S. Deser, A. Waldron (arxiv:1212.5835):

. . . �the subject remained moribund until the recent (independent)
rediscovery (dRGT, 2011) of the results by Wess-Zumino (1970).
This exhumation has, unsurprisingly, generated an immense industry.
Our purpose is to re-inter at least one model. . .
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Bigravity

Bigravity

The bigravity Lagrangian

L = L(f ) + L(g) −
√
−f U(fµν , gµν).

is composed of two almost independent parts

L(f ) =
1

16πG (f )

√
−f f µνR (f )

µν + L(f )
M (ψA, fµν),

L(g) =
1

16πG (g)

√
−ggµνR (g)

µν + L(g)
M (φA, gµν),

and the potential of their interaction

√
−f U(fµν , gµν) or 4

√
fgV (fµν , gµν) or

√
−gW (fµν , gµν).
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The dRGT potential

de Rham, Gabadadze, Tolley

Both the modern massive gravity and the bigravity (sometimes called
as the bimetric gravity) exploit the dRGT potential expressed by
means of the matrix square root. Let

Y α
β = gαµfµβ,

then
X =

√
Y , Y α

β = Xα
µ X

µ
β .

The potential is formed as a linear combination of coe�cients of the
characteristic polynomial of matrix Xα

β

P(λ) = Det(X − λI ),
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The dRGT potential

i.e. as a linear combination of symmetric polynomials of this matrix
eigenvalues

λ1 + λ2 + λ3 + λ4,

λ1λ2 + λ2λ3 + λ3λ4 + λ4λ1 + λ2λ4 + λ1λ3,

λ1λ2λ3 + λ2λ3λ4 + λ3λ4λ1 + λ4λ1λ2,

λ1λ2λ3λ4,

or by means of the traces of the matrix polynomials,

SpX ,

1

2

(
(SpX )2 − SpX 2

)
,

1

6

(
(SpX )3 − 3SpXSpX 2 + 2SpX 3

)
,

1

24

(
(SpX )4 − 6(SpX )2SpX 2 + 3(SpX 2)2 + 8SpXSpX 3 − 6SpX 4

)
.
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Statement of the problem

Statement of the problem

Direct calculations of the Poisson brackets for the dRGT potential are
not transparent enough, so the results derived by Hassan-Rosen
(2011) and some other authors (including the next speakers) seem to
us requiring a further simpli�cation and clari�cation.

Our plan was to start with a potential of a general form, and then to
derive conditions on this potential necessary and (or) su�cient to
have the same properties as the dRGT potential. We have found
these conditions and they are given below.
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Notations

Notations
One-parametrical family of spacelike (in both metrics) hypersurfaces
is de�ned by equations

Xα = eα(τ, x i),

then

Nα ≡ ∂eα

∂τ
, eαi ≡

∂eα

∂x i
.

The induced on hypersurfaces metrics are

γij = gµνe
µ
i e

ν
j , ηij = fµνe

µ
i e

ν
j .

There are two di�erent �elds of unit normals for any hypersurface,
nα(x i) and n̄α(x i) related by equation

nα = un̄α + uieαi ,

and there are two bases (nα, eαi ), (n̄α, eαi ) applicable for 3 + 1-
decompositions of the spacetime vectors and tensors.
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Notations

The suitable variables are the following

u =
1√
−g⊥⊥

, ui = − g⊥i

g⊥⊥
.

They have a transparent geometric meaning: u is the inverse of a
norm (calculated in g-metric) of unit normal vector nα, constructed
according to f-metric, and ui are projections (in g-metric) of the
hypersurface coordinate basis vectors onto nα:

u =
1√

|gµνnµnν |
, ui =

gµνnµe
i
ν√

|gµνnµnν |
.

Two sets of lapses and shifts are related by formulas:

N̄ = uN, N̄ i = N i + uiN,

inverse formulas are

u =
N̄

N
, ui =

N̄ i − N i

N
.
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The Hamiltonian

Bigravity Hamiltonian

Let
Ũ =

√
ηU.

Hcanonical = H
(f ) + H

(g) +

∫
d3xN

√
ηU

=

∫
d3x

(
NH + N iHi + N̄H̄ + N̄ iH̄i + NŨ

)
,

Another form is as follows

Hcanonical =

∫
d3x

[
N
(
H + uH̄ + uiH̄i + Ũ

)
+ N i

(
Hi + H̄i

)]
.
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Primary and secondary constraints

Primary constraints

πN = 0, πN i = 0, πu = 0, πui = 0.

Secondary constraints

R ≡ H + uH̄ + uiH̄i + Ũ = 0,

Ri ≡ Hi + H̄i = 0,

S ≡ H̄ +
∂Ũ

∂u
= 0, Si ≡ H̄i +

∂Ũ

∂ui
= 0.

The Jacobian for S,Si is the Hessian for Ũ:

D(S,Si)
D(u, uj)

=

∣∣∣∣∣ ∂2Ũ

∂ua∂ub

∣∣∣∣∣ = 0.
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Dirac brackets

Dirac brackets
Let the set of second class constraints is denoted as χA, A = 1, .., 6,
where

χA = (πi ,Si) ,
then the following Poisson brackets matrix is nondegenerate

||{χA(x), χB(y)}|| =

(
0 −L(x)δ(x , y)

L(x)δ(x , y) K(x , y)

)
,

and we are able to introduce Dirac brackets:

{F ,G}D = {F ,G} −
∫

dx

∫
dy{F , χA(x)}CAB(x , y){χB(y),G}.

where

C(x , y) =

(
L−1(x)K(x , y)L−1(y) L−1(x)δ(x , y)
−L−1(x)δ(x , y) 0

)
.
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Dirac brackets

The most important Dirac bracket is

{Sx ,Sy}D ≈ Θi
xδ,i(x , y)−Θi

yδ,i(y , x),

where

Θi ≡
(
ŪkD̂

(
δik − 2γjk

∂

∂γij

)
− γ ij ∂

∂uj

)
Ũ.

First, J. Kluson in 1109.3052 claimed this is nonzero, so DoF= 51
2
.

Then, S. Hassan and R. Rosen in 1111.2070 claimed they proved it is
zero for the dRGT potential.
So, for our potential Ũ should we believe or prove that Θi is zero?
For D. Comelli, F. Nesti and L. Pilo Θi = 0 is as an axiom.
We have proved this. But only thanks to D. Comelli, F. Nesti and L.
Pilo, who have given in 1302.4447 the reference to work
D. Fairlie and A. Leznov (that time a member of our Department),
Solving Monge-Ampere equation, hep-th/940313.
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Dirac brackets

Let us display the necessary and su�cient conditions

Q j
i ≡ 2ηik

∂Ũ

∂ηjk
+ 2γik

∂Ũ

∂γjk
− uj

∂Ũ

∂ui
− δji Ũ = 0,

Q i ≡ 2ujγjk
∂Ũ

∂γik
− uiu

∂Ũ

∂u
+
(
ηik − u2γ ik − uiuk

) ∂Ũ
∂uk

= 0.

for constraints R, Ri beeing 1st class:

{Rix ,Ry} ≈ Rxδ,i(x , y) +
∂

∂x j

(
Q j
i (x)δ(x , y)

)
,

{Rx ,Ry} ≈
(
ηijRj + Q i

)
x
δ,i(x , y)−

(
ηijRj + Q i

)
y
δ,i(y , x),

{Rix ,Rjy} = Riyδ,j(x , y) +Rjxδ,i(x , y).
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Tertiary and quaternary constraints

Tertiary and quaternary constraints

Tertiary constraint Ω appears from

{Sx ,Ry}D ≈ −Ωxδ(x , y).

Quaternary constraint Ψ appears from

{Ωx ,H}D ≈
∫

d3y{Ωx ,Ry}DNy ≈
∫

d3yΨxδ(x , y)Ny = 0,

Ψ is linear in variable u, as R = uS + . . . and so can be solved for it.
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Tertiary and quaternary constraints

Table of Dirac brackets between constraints

{, }D̃ πu(y) Ψ(y) Ω(y) S(y) R(y) Rj(y)

πu(x) (primary) 0 6= 0 −Θ̂ = 0 0 ≈ 0 0

Ψ(x) (quaternary) 6= 0

Ω(x) (tertiary) Θ̂ = 0 6= 0 Ψ ≈ 0 ≈ 0

S(x)(secondary) 0 6= 0 Θ̂ = 0 ≈ 0 ≈ 0

R(x) (secondary) ≈ 0 −Ψ ≈ 0 ≈ 0 ≈ 0 ≈ 0

Ri (x) (secondary) 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
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Results

Results: axioms for the potential
1 We have a di�erentiable function Ũ = Ũ(u, ui , ηij , γij).
2 Di�eomorphism invariance requires

2ηik
∂Ũ

∂ηjk
+ 2γik

∂Ũ

∂γjk
− uj

∂Ũ

∂ui
− δji Ũ = 0,

2ujγjk
∂Ũ

∂γik
− uiu

∂Ũ

∂u
+
(
ηik − u2γ ik − uiuk

) ∂Ũ
∂uk

= 0.

3 The big Hessian matrix is to be degenerate∣∣∣∣∣ ∂2Ũ

∂ua∂ub

∣∣∣∣∣ = 0, ua = (u, ui).

4 The small Hessian matrix is to be nondegenerate∣∣∣∣∣ ∂2Ũ∂ui∂uj

∣∣∣∣∣ 6= 0, i = 1, 2, 3.
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